Tag Archives: rear bearing

China manufacturer Wheel Hub Bearing 3dacf026f 24HS 42450-0d050 Rear Axle Bearing and Hub Assembly axle end caps

Product Description

Product Description

Product Name

Wheel hub assembly

Brand

PPB/Neutral Or As Your Request

Model Number

Front & rear wheel hub hub assembly 3DACF026F 24HS 42450-0D050

Ring Material

Steel/Gcr 15 material

Cage Material

Steel Cage. copper Cage. nylon cage

Precision

P0, P6, P5, P4, P2, or as requested

Vibration

ZV1, ZV2, ZV3, or as requested

Clearance

C0,C2,C3, or as requested

Size

  Rim Hole Number: 4

  Flange Ø: 135 mm

Features

Low friction, Long service life, Enhanced operational reliability, Consistency of roller profiles and sizes, Rigid bearing application, Running-in period with reduced temperature peaks, Separable and interchangeable With low and smoothly coefficient of friction

Quality standard

ISO9.2

VKBA523 482A/472 VKBA 5038 35BWD16 VKM14103

 

 

Company Profile

ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and other parts.

Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.

 

Customer’s satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.

 

Our Advantages

More than 20 years of manufacturing and exporting experience
OEM manufacturing available
Full range, large stock
Quickly feedback
One year warranty
One-stop service
On-time delivery

Packaging & Shipping

FAQ

1. What’s the minimum order quantity?

We don’t have the minimum order quantity. We can also provide free samples, but you need to pay the freight.

     
 2. Do you provide ODM&OEM order service?

Yes, we provide ODM&OEM services to customers around the world, and we can customize different brands and different sizes of packaging boxes according to customers’ requirements.

     
3. After-sales service and warranty time

We guarantee that our products will be free from defects in materials and workmanship within 12 months from the date of delivery. The warranty is void due to improper use, incorrect installation, and physical damage.
 

4. How to place an order?

Send us an email of the models, brand, quantity, consignee information, model of transportation, and payment
Confirm payment and arrange the production.
 

5. What are your packing conditions?

We use standardized export packaging and environmental protection packaging materials. If you have a legally registered patent, we will package the goods in your brand box after receiving your authorization

6. What are your payment terms?

T/T is 30% of the payment in advance and 70% balance before delivery. Before you pay the balance, we will show you photos or videos of the products and packaging.
 

7. How long is your delivery time?

The delivery time of sample order is 3-5 days, and that of a batch order is 5-45 days. The exact delivery time depends on the item and the quantity you ordered.
 

8. Do you test all products before delivery?
Yes, according to ISO standards, we have professional Q/C personnel, precision testing instruments, and an internal inspection system. We control the quality of every process from material receiving to packaging to ensure that you receive high-quality products

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year
Warranty: One Year
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P5
Certification: ISO9001, TS16949
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

Are there differences between front and rear axle hubs in terms of design and function?

Yes, there are differences between front and rear axle hubs in terms of design and function. Here’s a detailed explanation of these differences:

1. Design:

The design of front and rear axle hubs can vary based on the specific requirements of each axle position.

Front Axle Hubs: Front axle hubs are typically more complex in design compared to rear axle hubs. This is because front axle hubs are often responsible for connecting the wheels to the steering system and accommodating the front-wheel drive components. Front axle hubs may have provisions for attaching CV (constant velocity) joints, which are necessary for transmitting power from the engine to the front wheels in front-wheel drive or all-wheel drive vehicles. The design of front axle hubs may also incorporate features for connecting the brake rotor, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs generally have a simpler design compared to front axle hubs. They are primarily responsible for connecting the wheels to the rear axle shafts and supporting the wheel bearings. Rear axle hubs may not require the same level of complexity as front axle hubs since they do not need to accommodate steering components or transmit power from the engine. However, rear axle hubs still play a critical role in supporting the weight of the vehicle, transmitting driving forces, and integrating with the brake system.

2. Function:

The function of front and rear axle hubs differs based on the specific demands placed on each axle position.

Front Axle Hubs: Front axle hubs have the following primary functions:

  • Connect the wheel to the steering system, allowing for controlled steering and maneuverability.
  • Support the wheel bearings to facilitate smooth wheel rotation and weight distribution.
  • Integrate with the front-wheel drive components, such as CV joints, to transmit power from the engine to the front wheels.
  • Provide a mounting point for the brake rotor or drum, allowing for the integration of the braking system.

Rear Axle Hubs: Rear axle hubs have the following primary functions:

  • Connect the wheel to the rear axle shaft, facilitating power transmission and driving forces.
  • Support the wheel bearings to enable smooth wheel rotation and weight distribution.
  • Integrate with the brake system, providing a mounting point for the brake rotor or drum for braking performance.

3. Load Distribution:

Front and rear axle hubs also differ in terms of load distribution.

Front Axle Hubs: Front axle hubs bear the weight of the engine, transmission, and other front-end components. They also handle a significant portion of the vehicle’s braking forces during deceleration. As a result, front axle hubs need to be designed to handle higher loads and provide sufficient strength and durability.

Rear Axle Hubs: Rear axle hubs primarily bear the weight of the vehicle’s rear end and support the differential and rear axle shafts. The braking forces on the rear axle hubs are typically lower compared to the front axle hubs. However, they still need to be robust enough to handle the forces generated during acceleration, deceleration, and cornering.

In summary, there are differences between front and rear axle hubs in terms of design and function. Front axle hubs are typically more complex and accommodate steering components and front-wheel drive systems, while rear axle hubs have a simpler design focused on supporting the rear axle and integrating with the brake system. Understanding these differences is important for proper maintenance and repair of the axle hubs in a vehicle.

axle hub

Are there specific tools required for DIY axle hub replacement, and where can I find them?

When undertaking a DIY axle hub replacement, certain tools are needed to ensure a smooth and successful process. Here are some specific tools that are commonly required for DIY axle hub replacement and where you can find them:

  • Jack and jack stands: These tools are essential for raising the vehicle off the ground and providing a stable support system. You can find jacks and jack stands at automotive supply stores, hardware stores, and online retailers.
  • Lug wrench or socket set: A lug wrench or a socket set with the appropriate size socket is necessary to loosen and tighten the lug nuts on the wheel. These tools are commonly available at automotive supply stores, hardware stores, and online retailers.
  • Torque wrench: A torque wrench is required to tighten the lug nuts on the wheel and other fasteners to the manufacturer’s recommended torque specifications. Torque wrenches can be found at automotive supply stores, tool stores, and online retailers.
  • Pry bar: A pry bar is useful for gently separating the axle hub assembly from the mounting point, especially if it is tightly secured. Pry bars are available at automotive supply stores, hardware stores, and online retailers.
  • Hammer: A hammer can be used to tap or lightly strike the axle hub assembly or its components for removal or installation. Hammers are commonly available at hardware stores, tool stores, and online retailers.
  • Wheel bearing grease: High-quality wheel bearing grease is necessary for lubricating the axle hub assembly and ensuring smooth operation. Wheel bearing grease can be purchased at automotive supply stores, lubricant suppliers, and online retailers.
  • Additional tools: Depending on the specific vehicle and axle hub assembly, you may require additional tools such as a socket set, wrenches, pliers, or specific specialty tools. Consult the vehicle’s service manual or online resources for the specific tools needed for your vehicle model.

To find these tools, you can visit local automotive supply stores, hardware stores, or tool stores in your area. They typically carry a wide range of automotive tools and equipment. Alternatively, you can explore online retailers that specialize in automotive tools and equipment, where you can conveniently browse and purchase the tools you need.

It’s important to ensure that the tools you acquire are of good quality and suitable for the task at hand. Investing in quality tools can make the DIY axle hub replacement process more efficient and help achieve better results. Additionally, always follow the manufacturer’s instructions and safety guidelines when using tools and equipment.

In summary, specific tools are required for DIY axle hub replacement, such as a jack and jack stands, lug wrench or socket set, torque wrench, pry bar, hammer, and wheel bearing grease. These tools can be found at automotive supply stores, hardware stores, tool stores, and online retailers. Acquiring quality tools and following proper safety guidelines will contribute to a successful DIY axle hub replacement.

axle hub

Can axle hubs impact the alignment of a vehicle, and how is this corrected?

Axle hubs can indeed impact the alignment of a vehicle, and any alignment issues arising from the axle hubs should be corrected to ensure optimal vehicle handling, tire wear, and overall safety. Here’s a detailed explanation:

An axle hub is a critical component that connects the wheel assembly to the vehicle’s suspension. It houses the wheel bearings and provides the mounting point for the wheel. If an axle hub is damaged, worn, or improperly installed, it can lead to misalignment issues. Here are a few ways axle hubs can impact vehicle alignment:

  • Bearing Wear: Axle hubs contain wheel bearings that allow the wheels to rotate smoothly. If the bearings are worn or damaged, they can introduce play or uneven movement in the wheel assembly. This can result in misalignment, causing the vehicle to pull to one side or affect the camber, toe, or caster angles.
  • Improper Installation: If an axle hub is not installed correctly, it can introduce misalignment issues. For example, if the hub is not tightened to the specified torque or if the mounting surfaces are not properly cleaned, it can result in uneven pressure distribution and misalignment.
  • Impact Damage: Axle hubs can get damaged due to accidents, hitting potholes, or other impacts. Any deformation or misalignment of the axle hub can affect the alignment of the wheel assembly.

To correct alignment issues caused by axle hubs, the following steps are typically taken:

  1. Inspection: A thorough inspection of the axle hubs is conducted to identify any damage, wear, or improper installation. This may involve removing the wheels and visually examining the axle hubs for signs of damage or wear.
  2. Replacement: If the axle hubs are found to be damaged, worn, or improperly installed, they need to be replaced. Replacement axle hubs should be sourced from reputable manufacturers or OEM (Original Equipment Manufacturer) suppliers to ensure proper fit and alignment.
  3. Wheel Alignment: After replacing the axle hubs, a wheel alignment procedure is necessary to correct any misalignment caused by the previous issues. This typically involves adjusting the camber, toe, and caster angles to the manufacturer’s specifications using specialized alignment equipment.
  4. Additional Repairs: In some cases, axle hub-related alignment issues may have caused additional damage to suspension components or steering linkage. These components should be inspected and repaired as needed to ensure proper alignment and functionality.

It’s important to note that correcting alignment issues caused by axle hubs generally requires the expertise of a qualified mechanic or alignment specialist. They have the necessary knowledge, experience, and equipment to accurately diagnose and rectify alignment problems associated with axle hubs.

In summary, axle hubs can impact the alignment of a vehicle. Issues such as bearing wear, improper installation, or impact damage can introduce misalignment. To correct these alignment issues, a thorough inspection of the axle hubs is conducted, followed by replacement if necessary. Afterward, a wheel alignment procedure is performed to adjust the angles to the manufacturer’s specifications. Professional assistance from a qualified mechanic or alignment specialist is recommended to ensure accurate diagnosis and proper correction of axle hub-related alignment issues.

China manufacturer Wheel Hub Bearing 3dacf026f 24HS 42450-0d050 Rear Axle Bearing and Hub Assembly   axle end capsChina manufacturer Wheel Hub Bearing 3dacf026f 24HS 42450-0d050 Rear Axle Bearing and Hub Assembly   axle end caps
editor by CX 2024-04-24

China manufacturer Automobile Wheel Hub Unit Vkba6649 713610900 Wheel Hub Bearing Hub Unit Assembly Fit for Audi Front Axle and Rear Axle a 3-axle vehicle

Product Description

Product Description

Product Name

Wheel hub assembly VKBA6649

Brand

PPB/Neutral Or As Your Request

Features

Low friction, Long service life, Enhanced operational reliability, Consistency of roller profiles and sizes, Rigid bearing application, Running-in period with reduced temperature peaks, Separable and interchangeable With low and smoothly coefficient of friction

Quality standard

ISO9.2

VKBA523 482A/472 VKBA 5038 35BWD16 VKM14103

 

 

Company Profile

ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and other parts.

Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.

 

Customer’s satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.

Our Advantages

More than 20 years of manufacturing and exporting experience
OEM manufacturing available
Full range, large stock
Quickly feedback
One year warranty
One-stop service
On-time delivery

Packaging & Shipping

Packaging Details 1 piece in a single box
2 boxes in a carton
30 cartons in a pallet
Nearest Port ZheJiang or HangZhou
Lead Time For stock parts: 1-5 days.
If no stock parts:
<20 pcs: 15-30 days
≥20 pcs: to be negotiated.

OUR SERVICES
– We have more than 20 years’ experience in auto bearings fields.
– Excellent quality control is 1 of our main principles
– We offer OEM service, accept customer labels, and develop the product with your drawings or samples
– Any questions will get a response within 24 hours.

FAQ

1. What’s the minimum order quantity?

We don’t have the minimum order quantity. We can also provide free samples, but you need to pay the freight.

     
 2. Do you provide ODM&OEM order service?

Yes, we provide ODM&OEM services to customers around the world, and we can customize different brands and different sizes of packaging boxes according to customers’ requirements.

     
3. After-sales service and warranty time

We guarantee that our products will be free from defects in materials and workmanship within 12 months from the date of delivery. The warranty is void due to improper use, incorrect installation, and physical damage.
 

4. How to place an order?

Send us an email of the models, brand, quantity, consignee information, model of transportation, and payment
Confirm payment and arrange the production.
 

5. What are your packing conditions?

We use standardized export packaging and environmental protection packaging materials. If you have a legally registered patent, we will package the goods in your brand box after receiving your authorization

6. What are your payment terms?

T/T is 30% of the payment in advance and 70% balance before delivery. Before you pay the balance, we will show you photos or videos of the products and packaging.
 

7. How long is your delivery time?

The delivery time of the sample order is 3-5 days, and that of a batch order is 5-45 days. The exact delivery time depends on the item and the quantity you ordered.
 

8. Do you test all products before delivery?
Yes, according to ISO standards, we have professional Q/C personnel, precision testing instruments, and an internal inspection system. We control the quality of every process from material receiving to packaging to ensure that you receive high-quality products

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year
Warranty: One Year
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P0
Certification: ISO9001, TS16949
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

How do I diagnose and address noise issues associated with a malfunctioning axle hub?

Diagnosing and addressing noise issues associated with a malfunctioning axle hub requires a systematic approach to identify the root cause and take appropriate corrective measures. Here’s a detailed explanation of the diagnostic process and steps to address the problem:

1. Identify the Noise:

The first step is to identify the specific noise associated with the malfunctioning axle hub. Pay attention to the type and characteristics of the noise, such as grinding, growling, clicking, or humming. Note when the noise occurs, whether it’s during acceleration, deceleration, or while turning. This initial identification can help narrow down the possible causes.

2. Inspect the Axle Hub:

Visually inspect the axle hub for any signs of damage or wear. Look for cracks, corrosion, or loose components. Check if there is any leaking grease around the hub, as it can indicate bearing failure. A thorough inspection can provide valuable clues about the condition of the axle hub.

3. Perform a Road Test:

Take the vehicle for a road test to observe the noise and its behavior under different driving conditions. Pay attention to any changes in the noise when making turns, accelerating, or braking. Note whether the noise gets louder or changes in pitch. This can help in further narrowing down the issue.

4. Jack up the Vehicle:

If the noise persists and is suspected to be coming from the axle hub, jack up the vehicle and secure it with jack stands. Rotate the wheel associated with the suspected axle hub and listen for any abnormal noise or roughness. Try to wiggle the wheel by hand to check for excessive play or looseness, which can indicate a problem with the hub assembly.

5. Check Wheel Bearings:

A common cause of noise issues in axle hubs is worn-out or damaged wheel bearings. To check the wheel bearings, grasp the tire at the 12 o’clock and 6 o’clock positions and attempt to rock it back and forth. Excessive movement or play indicates a potential problem with the wheel bearings. Additionally, spin the wheel and listen for any grinding or rumbling noises, which can also be indicative of bearing issues.

6. Addressing the Issue:

If a malfunctioning axle hub is identified as the source of the noise, the following steps can be taken to address the problem:

  • Replacement: If the axle hub is severely damaged or the bearings are worn out, replacing the entire hub assembly is often recommended. This ensures proper fitment, bearing integrity, and overall reliability. Consult the vehicle’s service manual or seek professional assistance for the correct replacement procedure.
  • Bearing Replacement: In some cases, it may be possible to replace the wheel bearings within the axle hub if they are the sole source of the noise issue. This requires specialized tools and expertise, so it is advisable to consult a qualified mechanic for bearing replacement.
  • Additional Repairs: Depending on the severity of the issue, it may be necessary to address other related components. This can include replacing damaged CV joints, inspecting and replacing worn brake components, or addressing any other issues identified during the diagnostic process.

7. Post-Repair Verification:

After addressing the noise issue by repairing or replacing the malfunctioning axle hub, take the vehicle for a test drive to verify that the noise is eliminated. Ensure that the vehicle operates smoothly, and there are no abnormal vibrations or noises coming from the axle hub during different driving conditions.

It’s important to note that diagnosing and addressing noise issues associated with a malfunctioning axle hub can be complex, and it may require the expertise of a qualified mechanic. If you’re uncomfortable performing the diagnostics and repairs yourself, it’s advisable to seek professional assistance to ensure an accurate diagnosis and proper resolution of the issue.

In summary, diagnosing and addressing noise issues associated with a malfunctioning axle hub involves identifying the noise, inspecting the hub, performing a road test, checking wheel bearings, and taking appropriate repair or replacement measures. Following a systematic approach and seeking professional help when needed can help resolve the noise issue and ensure the safe operation of the vehicle.

axle hub

How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?

Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:

  • Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
  • Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
  • Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
  • Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
  • Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.

It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.

In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.

axle hub

Can axle hubs be upgraded for better performance, and if so, how?

Axle hubs can be upgraded to improve performance in certain cases. Upgrading axle hubs can involve various modifications and enhancements. Here’s a detailed explanation:

Before considering an upgrade, it’s important to evaluate the specific needs and goals for the vehicle. Upgrades to axle hubs can target areas such as durability, load capacity, handling, and overall performance. Here are some potential ways to upgrade axle hubs:

  • High-Performance Bearings: Upgrading to high-performance wheel bearings can improve the durability and load capacity of the axle hub. High-quality bearings made from stronger materials or featuring advanced designs can provide enhanced reliability and performance under demanding conditions.
  • Performance Seals: Upgraded seals can provide better protection against contaminants and improve the overall sealing performance of the axle hub. Enhanced seals can help prevent dirt, water, and other debris from entering the hub assembly, increasing its lifespan and reducing the risk of damage.
  • Reinforced Hub Components: In some cases, upgrading to axle hubs with reinforced components, such as stronger hub bodies or larger studs, can enhance their load-carrying capacity and overall strength. This can be particularly beneficial for vehicles that operate under heavy loads or encounter rugged terrain.
  • Improved Cooling: Upgrading the cooling system of the axle hub can help dissipate heat more effectively, reducing the risk of overheating and prolonging the lifespan of the hub components. This can involve the addition of cooling fins, better ventilation, or even the use of aftermarket cooling solutions.
  • Performance Coatings: Applying specialized coatings to the axle hub surfaces can provide better protection against corrosion and wear. Coatings such as zinc plating or ceramic coatings can enhance the durability and performance of the hub components, particularly in harsh environments.
  • Aftermarket Axle Hub Assemblies: In some cases, aftermarket axle hub assemblies can offer performance-oriented upgrades over stock components. These assemblies may incorporate design improvements, advanced materials, or specialized features to enhance performance, reliability, and overall functionality.

It’s important to note that axle hub upgrades may require careful consideration of compatibility with other vehicle components, such as brakes, wheels, and suspension. Additionally, some upgrades may affect the vehicle’s warranty or require professional installation. It is recommended to consult with knowledgeable professionals, such as mechanics or specialists, who can provide guidance on suitable upgrades and ensure proper installation.

When considering axle hub upgrades, it’s also essential to assess the overall condition of the vehicle and address any underlying issues. Regular maintenance, such as proper lubrication, inspection, and timely replacement of worn components, is crucial for maximizing the performance and lifespan of the axle hubs.

In summary, axle hubs can be upgraded to improve performance in certain cases. Upgrades may involve high-performance bearings, improved seals, reinforced hub components, enhanced cooling, performance coatings, or aftermarket axle hub assemblies. It’s important to assess the specific needs of the vehicle, consult with professionals, and consider compatibility with other components when pursuing axle hub upgrades.

China manufacturer Automobile Wheel Hub Unit Vkba6649 713610900 Wheel Hub Bearing Hub Unit Assembly Fit for Audi Front Axle and Rear Axle   a 3-axle vehicleChina manufacturer Automobile Wheel Hub Unit Vkba6649 713610900 Wheel Hub Bearing Hub Unit Assembly Fit for Audi Front Axle and Rear Axle   a 3-axle vehicle
editor by CX 2024-04-04

China manufacturer Automotive Parts Rear Axle Wheel Bearing Hub 512176 Br930276 for Honda Accord 1998-2002 L4 2.3L Non-ABS Drum Brakes with Good quality

Product Description

Product Description

A wheel bearing is applied to the automotive axle to load and provide accurate CZPT components for the rotation of the wheel hub, both bearing axial load and radial load. It has good performance to installing, omitted clearance, lightweight, compact structure, large load capacity, for the sealed bearing prior to loading, ellipsis external wheel grease seal and from maintenance, etc. And wheel bearing has been widely used in cars, trucks.

 

An Auto wheel bearing is the main usage of bearing and provides an accurate CZPT to the rotation of the wheel hub. Under axial and radial load, it is a very important component. It is developed on the basis of standardized angular contact ball bearings and tapered roller bearings.
 

Features: 

 A. auto wheel hub bearings are adopted with international superior raw material and high-class grease from USA Shell grease. 

B.The series auto wheel hub bearings are in the nature of frame structure, lightweight, large rated burden, strong resistant capability, thermostability, good dustproof performance and etc. 

C. Auto wheel hub bearing can be endured bidirectional axial load and major radial load and sealed bearings are unnecessary to add lubricant additives upon assembly. 

Product Parameters

Item Automotive parts Rear axle wheel bearing hub 512176 BR935716 for Honda Accord 1998-2002 L4 2.3L Non-ABS Drum brakes

Fitting position

Rear Axle left and right
Parameter Rear Axle
Flange Diameter: 5.98 In.
Bolt Circle Diameter: 4.50 In.
Wheel Pilot Diameter: 2.52 In.
Brake Pilot Diameter: 2.52 In.
Flange Offset: 2.20 In.
Hub Pilot Diameter: 2.60 In.
Bolt Size: M12X1.5
Bolt Quantity: 4
Bolt Hole qty: N/A
ABS Sensor: N
Number of Splines: N/A
ABS Sensor No
Package 1,barreled package+outer carton+pallets 
2,plastic bag+single box+outer carton+pallets 
3,tube package+middle box+outer carton+pallets 
4, According to your’s requirement
Quality Control We have a complete process for production and quality assurance to make sure our products can meet your requirement.
1. Assembly
2. Windage test
3. Cleaning
4. Rotary test
5. Greasing and gland
6. Noise inspection
7. Appearance inspection
8. Rust prevention

 

Detailed Photos

Carfitment and part number

OEM No. Ref.
512176
42200S84A01
42200S84C01
42200S84C571M1

051-6161
45711
BR930167
NT512176
735-0110
42200-S84-A01
42200-S84-C01
712176
VKBA3953
512176
HA598401
512176
WH512176
295-12176
WA512176
051-6161
BR930167
WH50.512176
WE60526
WE60524
712176

 

Carfitment

Honda Accord 1998-2002 L4 2.3L Non-ABS Drum brakes

Other Model List Reference( Please contact us for more details)

Ref. No. Ref. No. Ref. No. Car Model
512000 BR930053 512000 Saturn S Series
512179 BR930071 512179 Acura
513098 FW156 513098 Acura
513033 BR93571 513033 Acura Integra
513105 BR930113 513105 Acura Integra
512012 BR935718 512012 Audi TT
513125 BR930161 513125 BMW 318
513017K BR93571K 513017K Buick  Skyhawk
512244 BR930075 HA590073 Buick Allure
513203 BR930184 HA590076/ HA590085 Buick Allure
512078 BR930078 512078 Buick Century
512150 BR930075 512150 Buick Century
512151 BR930145 512151 Buick Century
512237 BR930075 512237 Buick Century
513018 BR930026 513018 Buick Century
513121 BR930148 Threaded Hub/BR930548K 513121 Buick Century
513160 BR930184 513160 Buick Century
513179 BR930149/930548K 513179 Buick Century
513011K BR930091K 513011K Buick Century
513016K BR930571K 513016K Buick Century
513062 BR930068 513062 Buick Electra
512003 BR930074 512003 Buick Lesabre
513088 BR930077 513088 Buick LeSabre
513087 BR930076 513087 Buick Park Ave
512004 BR930096 512004 Buick Regal
513044 BR930083K 513044 Buick Regal
513187 BR930149/930548K 513187 Buick Rendevous
513013 BR930052K 513013 Buick Riviera
513012 BR930093 513012 Buick Skyhawk
512001 BR930070 512001 Buick Skylark
515053 BR93571 SP450301 Cadillac Escalade
515571 BR930346 SP550307 Cadillac Esclade
513164 BR930169 HA596467 Cadillac Catera
515036 BR930304 SP500300 cadillac Escalade
515005 BR930265 515005 Chevy Astro
515019 BR935719 SP550308 Chevy Astro
513200 BR930497 SP450300 Chevy Blazer
513090 BR930186 513090 Chevy Camaro
513204 BR935716 HA590068 Chevy Colbalt
512229 BR930327 512229 Chevy Equinox
512230 BR930328 512230 Chevy Equinox
512152 BR930098 512152 Chevy Fleet Classic
513137 BR930080 513137 Chevy Fleet Classic
513215 BR93571 HA590071 Chevy Malibu
518507 BR930300K 518507 Chevy Prizm
515054   SP550306 Chevy Silverado
515058 BR93571 SP58571 Chevy Silverado
513193 BR930308 513193 Chevy Tracker
513124 BR930097 513124 Chevy/GMC
515018   HA591339 Chevy/GMC
515015 BR930406 SP580302/580303 Chevy/GMC  20/2500
515016   SP580300 Chevy/GMC  20/2500
515001 BR930094 515001 Chevy/GMC All K Series
515002 BR930035 515002 Chevy/GMC K Series
515041 BR930406 SP580302/580303 Chevy/GMC K1500
515048     Chevy/GMC K1500
515055     Chevy/GMC K1500
515037     Chevy/GMC K3500
513061 BR930064 513061 Chevy/GMC S15 Jimmy
512133 BR930176 512133 Chrysler Cirrus
512154 BR930194 512154 Chrysler Cirrus
512220 BR930199 512220 Chrysler Cirrus
513138 BR930138 513138 Chrysler Cirrus
512571 BR930188 / 189 512571 Chrysler Concorde
513089 BR930190K 513089 Chrysler Concorde
518501 BR930001 518001 Chrysler E Class
518502 BR930002 518502 Chrysler E Class
513075 BR930013 513075 Chrysler Le Baron
518500 BR930000 518500 Chrysler LeBaron
513123 BR935715 513123 Chrysler Prowler
512167 BR930173 512167 Chrysler PT Cruiser
512136 BR930172 512136 Chrysler Sebring
512157 BR930066 512157 Chrysler Town & Country
512169 BR935718 512169 Chrysler Town & Country
512170 BR935719 512170 Chrysler Town & Country
513074 BR930571K 513074 Chrysler Town & Country
513122 BR935716 513122 Chrysler Town & Country
512155 BR930069 512155 Chrysler Town Country
512156 BR930067 512156 Chrysler Town Country

A wide range of applications:

• agriculture and forestry equipment
• automotive and industrial gearboxes
• automotive and truck electric components, such as alternators
• electric motors
• fluid machinery
• material handling
• power tools and household appliances
• textile machinery
• two Wheeler

Company Profile

Our Advantages

1.ISO Standard

2.Bearing Small order accepted

3.In Stock bearing

4.OEM bearing service

5.Professional Technical Support

6.Timely pre-sale service
7.Competitive price
8.Full range of products on auto bearings
9.Punctual Delivery
11.Excellent after-sale service
 

Packaging & Shipping

 

Packaging Details 1 piece in a single box
50 boxes in a carton
20 cartons in a pallet
Nearest Port ZheJiang or HangZhou
Lead Time For stock parts: 1-5 days.
If no stock parts:
<200 pcs: 15-30 days
≥200 pcs: to be negotiated.

 

FAQ

If you have any other questions, please feel free to contact us as follows:

 

Q: Why did you choose us?

1. We provide the best quality bearings with reasonable prices, low friction, low noise, and long service life.

2. With sufficient stock and fast delivery, you can choose our freight forwarder or your freight forwarder.

 

Q: Do you accept small orders?

100% quality check, once your bearings are standard size bearings, even one, we also accept.

 

Q: How long is your delivery time?

Generally speaking, if the goods are in stock, it is 1-3 days. If the goods are out of stock, it will take 6-10 days, depending on the quantity of the order.

 

Q: Do you provide samples? Is it free or extra?

Yes, we can provide a small number of free samples. 

 

Q: What should I do if I don’t see the type of bearings I need?

We have too many bearing series numbers. Just send us the inquiry and we will be very happy to send you the bearing details.

Q: Could you accept OEM and customize?
A: Yes, we can customize for you according to sample or drawing, but, pls provide us technical data, such as dimension and mark.

Contact Us 
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year / 30000-50000kms
Warranty: 1 Year / 30000-50000kms
Type: Wheel Hub Bearing
Material: Gcr15/65mn/55
Tolerance: P0 P6 P4 P5 P2
Certification: TS16949
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

What steps are involved in the proper removal and installation of an axle hub assembly?

Properly removing and installing an axle hub assembly requires a systematic approach and the use of appropriate tools. Here are the detailed steps involved in the process:

  1. Gather the necessary tools: Before starting the removal and installation process, gather the required tools and equipment. This may include a jack, jack stands, lug wrench, socket set, torque wrench, pry bar, hammer, and a suitable wheel bearing grease.
  2. Prepare the vehicle: Park the vehicle on a flat surface and engage the parking brake. If necessary, loosen the lug nuts on the wheel associated with the axle hub assembly, but do not remove them yet.
  3. Jack up the vehicle: Use a jack to lift the vehicle off the ground at a suitable jacking point. Place jack stands under the vehicle to provide additional support and ensure safety. Carefully lower the vehicle onto the jack stands.
  4. Remove the wheel: Completely remove the lug nuts and take off the wheel to access the axle hub assembly.
  5. Disconnect brake components: Depending on the specific vehicle, there may be brake components attached to the axle hub assembly. This can include brake calipers, brake pads, and brake rotors. Follow the appropriate procedure to disconnect these components, which may involve removing caliper bolts, brake pad retaining clips, or rotor retaining screws.
  6. Disconnect the axle: If the axle shaft is connected to the axle hub assembly, disconnect it by removing the retaining nut or bolts. This step may vary depending on the type of axle and vehicle.
  7. Remove the axle hub assembly: The axle hub assembly is typically secured to the steering knuckle or suspension component by bolts or studs. Use the appropriate tools to remove these fasteners and carefully detach the axle hub assembly from the vehicle. In some cases, the assembly may be tight and require the use of a pry bar or hammer to gently separate it from the mounting point.
  8. Clean and inspect: Once the axle hub assembly is removed, clean the mounting surface on the steering knuckle or suspension component. Inspect the mounting area for any damage or corrosion that may affect the installation of the new axle hub assembly. Also, inspect the axle shaft and surrounding components for any signs of damage or wear.
  9. Install the new axle hub assembly: Apply a thin layer of wheel bearing grease to the mounting surface of the steering knuckle or suspension component. Carefully align the new axle hub assembly with the mounting holes and slide it into place. Install the bolts or studs and tighten them according to the manufacturer’s specifications. If there are any retaining nuts or bolts for the axle shaft, reinstall them and torque them to the recommended values.
  10. Reconnect brake components: Reinstall any brake components that were disconnected, such as brake calipers, brake pads, and brake rotors. Make sure to follow the correct procedure and torque specifications for these components.
  11. Reinstall the wheel: Put the wheel back onto the vehicle and hand-tighten the lug nuts. Lower the vehicle from the jack stands using a jack, and then use a torque wrench to tighten the lug nuts to the manufacturer’s recommended torque specification.
  12. Test and verify: Once the axle hub assembly is installed and all components are properly reconnected, take the vehicle for a test drive. Pay attention to any unusual noises, vibrations, or handling issues. Verify that the axle hub assembly is functioning correctly and that there are no leaks or other problems.

It’s important to note that the specific steps and procedures may vary depending on the vehicle make and model. Always consult the vehicle’s service manual or seek professional assistance if you are unsure about any aspect of the removal and installation process.

In summary, the proper removal and installation of an axle hub assembly involve gathering the necessary tools, preparing the vehicle, jacking up the vehicle, removing the wheel, disconnecting brake components and the axle, removing the old axle hub assembly, cleaning and inspecting, installing the new assembly, reconnecting brake components, reinstalling the wheel, and finally testing and verifying the functionality of the axle hub assembly.

axle hub

How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?

Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:

  • Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
  • Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
  • Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
  • Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
  • Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.

It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.

In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.

axle hub

How do changes in wheel offset affect the angles and performance of axle hubs?

Changes in wheel offset can have a significant impact on the angles and performance of axle hubs. Here’s a detailed explanation:

Wheel offset refers to the distance between the centerline of the wheel and the mounting surface. It determines how far the wheel and tire assembly will be positioned in relation to the axle hub. There are three types of wheel offsets: positive offset, zero offset, and negative offset.

Here’s how changes in wheel offset can affect the angles and performance of axle hubs:

  • Camber Angle: Camber angle refers to the inward or outward tilt of the wheel when viewed from the front of the vehicle. Changes in wheel offset can impact the camber angle. Increasing positive offset or reducing negative offset typically results in more positive camber, while increasing negative offset or reducing positive offset leads to more negative camber. Improper camber angle can cause uneven tire wear, reduced traction, and handling issues.
  • Track Width: Wheel offset affects the track width, which is the distance between the centerlines of the left and right wheels. Wider track width can improve stability and cornering performance. Increasing positive offset or reducing negative offset generally widens the track width, while increasing negative offset or reducing positive offset narrows it.
  • Steering Geometry: Changes in wheel offset also impact the steering geometry of the vehicle. Altering the offset can affect the scrub radius, which is the distance between the tire contact patch and the steering axis. Changes in scrub radius can influence steering effort, feedback, and stability. It’s important to maintain the appropriate scrub radius for optimal handling and performance.
  • Wheel Bearing Load: Wheel offset affects the load applied to the wheel bearings. Increasing positive offset or reducing negative offset generally increases the load on the inner wheel bearing, while increasing negative offset or reducing positive offset increases the load on the outer wheel bearing. Proper wheel bearing load is crucial for their longevity and performance.
  • Clearance and Interference: Changes in wheel offset can also impact the clearance between the wheel and suspension components or bodywork. Insufficient clearance due to excessive positive offset or inadequate clearance due to excessive negative offset can lead to rubbing, interference, or potential damage to the axle hub, suspension parts, or bodywork.

It’s important to note that any changes in wheel offset should be done within the manufacturer’s recommended specifications or in consultation with knowledgeable professionals. Deviating from the recommended wheel offset can lead to adverse effects on the axle hub angles and performance, as well as other aspects of the vehicle’s handling and safety.

When modifying wheel offset, it is crucial to consider the overall impact on the vehicle’s suspension geometry, clearance, and alignment. It may be necessary to make corresponding adjustments to maintain proper alignment angles, such as camber, toe, and caster, to ensure optimal tire wear, handling, and performance.

In summary, changes in wheel offset can have a significant impact on the angles and performance of axle hubs. They can affect camber angles, track width, steering geometry, wheel bearing load, and clearance. It is important to adhere to manufacturer’s specifications and consult with knowledgeable professionals when considering changes in wheel offset to ensure proper alignment, optimal performance, and safe operation of the vehicle.

China manufacturer Automotive Parts Rear Axle Wheel Bearing Hub 512176 Br930276 for Honda Accord 1998-2002 L4 2.3L Non-ABS Drum Brakes   with Good quality China manufacturer Automotive Parts Rear Axle Wheel Bearing Hub 512176 Br930276 for Honda Accord 1998-2002 L4 2.3L Non-ABS Drum Brakes   with Good quality
editor by CX 2024-03-29

China wholesaler Rear Axle Wheel Hub Wheel Hub Bearing Assembly for Audi A4 Vkba3606 8e0598611 Car Parts axle extender

Product Description

Basic information:

Description Rear Axle Wheel Hub & Bearing Assembly For AUDI A4 VKBA3606 8E571611
Material Chrome steel Gcr15
Application For AUDI
For SEAT
Position Rear wheel bearing assembly
With ABS with ABS sensor ring
Bolts  5 holes
Weight 2.3 kg
Brand SI, PPB, or customized
Packing Neutral, SI, PPB brand packing or customized
OEM/ODM service Yes
Manufacture place ZHangZhoug, China
MOQ 50 PCS
OEM replacement Yes
Inspection 1
GSP : 9232014K
OPTIMAL : 157171
S-KF : VKBA 3606
SNR : R157.27

Application:
For AUDI A4 (8E2, B6) (2000/11 – 2004/12)
For AUDI A4 Avant (8E5, B6) (2001/04 – 2004/12)
For AUDI A4 Convertible (8H7, B6, 8HE, B7) (2002/04 – 2009/03)
For AUDI A4 (8EC, B7) (2004/11 – 2008/06)
For AUDI A4 Avant (8ED, B7) (2004/11 – 2008/06)
For AUDI  (FAW)A4 Saloon (8E2, B6) (2002/08 – 2005/07)
For AUDI  (FAW)A4 Saloon (8EC, B7) (2005/07 – 2008/09)
For SEAT EXEO (3R2) (2008/12 – /)
For SEAT EXEO ST (3R5) (2009/05 – /)

Wheel bearing kit parts list:
Bearing 1
Sealing/Protective Cap 1
Screw 1

Packing and Delivery:

Work shop:

Exhibitions:

FAQ:
Q1.What is your shipping logistic?
Re: DHL, TNT, FedEx express, by air/sea/train.

Q2:What’s the MOQ?
Re: For the wheel hub assembly. The MOQ is always 50 sets. If ordering together with other models, small quantities can be organized. But need more time due to the production schedule.

Q3. What are your goods of packing?
Re: Generally, our goods will be packed in Neutral white or brown boxes for the hub bearing unit. Our brand packing SI & CZPT are offered. If you have any other packing requests, we shall also handle them.

Q4. What is your sample policy?
Re: We can supply the sample if we have ready parts in stock.

Q5. Do you have any certificates?
Re: Yes, we have the certificate of ISO9001:2015.

Q6:Any warranty of your products.
Re: Sure, We are offering a guarantee for 12 months or 40,000-50,000 km for the aftermarket.
 

Q7: How can I make an inquiry?

Re: You can contact us by email, telephone, WhatsApp, , etc.

 

Q8: How long can reply inquiry?

Re: Within 24 hours.

 

Q9: What’s the delivery time?

Re: Ready stock 10-15 days, production for 30 to 45 days.

 

Q10: How do you maintain our good business relationship?

Re: 1. Keep stable, reliable quality, competitive price to ensure our customer’s benefit;

2. Optimal lead time.

3. Keep customers updated about the new goods.

4. Make customers satisfaction as our main goal.

 

Q11: Can we visit the company & factory?

Re: Yes, welcome for your visit & business discussion.

 

After-sales Service: Yes
Warranty: Yes
Type: Wheel Hub Bearing
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle hub

Can a damaged axle hub affect the overall performance and safety of a vehicle?

Yes, a damaged axle hub can significantly affect the overall performance and safety of a vehicle. Here’s a detailed explanation of how a damaged axle hub can impact a vehicle:

1. Wheel Stability:

A damaged axle hub can compromise the stability of the wheel assembly. If the hub is bent, cracked, or worn out, it may not provide a secure mounting point for the wheel. This can result in wheel wobbling or excessive play, leading to unstable handling and compromised vehicle control. A wobbling wheel can also cause vibrations, which can affect the comfort of the passengers and potentially lead to further damage to other components of the suspension system.

2. Wheel Bearing Performance:

The axle hub houses the wheel bearings, which are critical for smooth wheel rotation and weight support. A damaged axle hub can negatively impact the performance of the wheel bearings. For example, if the hub is misaligned or has damaged bearing races, it can cause excessive friction, uneven wear, and premature failure of the wheel bearings. This can lead to wheel noise, reduced fuel efficiency, and compromised safety as the wheel may seize or detach while driving.

3. Brake System Integration:

In many vehicles, the axle hub integrates with the brake rotor or drum. A damaged axle hub can affect the proper installation and function of the braking components. For example, if the hub has damaged mounting surfaces or incorrect dimensions, it may result in brake rotor runout or misalignment. This can cause uneven braking, pulsation in the brake pedal, and reduced braking performance, compromising the vehicle’s ability to stop safely and efficiently.

4. Wheel Alignment and Suspension:

The axle hub plays a role in maintaining proper wheel alignment and supporting the suspension system. A damaged axle hub can lead to misalignment, affecting the camber, toe, or caster angles of the wheel. Improper wheel alignment can result in uneven tire wear, compromised handling, and reduced stability, impacting overall vehicle performance and safety. Additionally, a damaged hub may not provide adequate support for the suspension components, leading to increased stress and potential failure of other suspension parts.

5. Risk of Wheel Separation:

If a damaged axle hub is not addressed promptly, there is a risk of wheel separation. A severely damaged hub can eventually fail, causing the wheel to detach from the vehicle while in motion. Wheel separation is extremely dangerous and can result in a loss of control, vehicle instability, and potential accidents with severe consequences for the occupants and other road users.

6. Overall Safety:

The overall safety of the vehicle can be compromised when the axle hub is damaged. The stability, braking performance, wheel alignment, and suspension function are critical for safe operation. A damaged axle hub can negatively impact these aspects, increasing the risk of accidents and reducing the ability to control the vehicle effectively.

In summary, a damaged axle hub can have a significant impact on the overall performance and safety of a vehicle. It can compromise wheel stability, impair wheel bearing performance, affect brake system integration, disrupt wheel alignment and suspension, and increase the risk of wheel separation. It is crucial to address any signs of axle hub damage promptly to ensure the safe and efficient operation of the vehicle.

axle hub

What role does the ABS sensor play in the context of an axle hub assembly?

The ABS (Anti-lock Braking System) sensor plays a crucial role in the context of an axle hub assembly. It is an integral component of the braking system and is responsible for monitoring the speed and rotational behavior of the wheels. Here’s a detailed explanation of the role of the ABS sensor in the context of an axle hub assembly:

  • Wheel speed monitoring: The primary function of the ABS sensor is to monitor the rotational speed of the wheels. It does this by detecting the teeth or magnetic patterns on a tone ring or reluctor ring mounted on the axle hub or adjacent to the wheel hub. By continuously measuring the speed of each wheel, the ABS sensor provides crucial data to the vehicle’s ABS system.
  • Anti-lock Braking System (ABS): The ABS system utilizes the data provided by the ABS sensors to determine if any wheel is about to lock up during braking. If a wheel is on the verge of locking up, the ABS system modulates the braking pressure to that wheel. This prevents the wheel from fully locking up, allowing the driver to maintain control of the vehicle and reducing the risk of skidding or loss of steering control.
  • Traction control: In addition to aiding the ABS system, the ABS sensors also play a role in the vehicle’s traction control system. By continuously monitoring the rotational speed of the wheels, the ABS sensors assist in detecting any wheel slippage or loss of traction. When a wheel slips, the traction control system can adjust the engine power output or apply brake pressure to the specific wheel to regain traction and maintain stability.
  • Stability control: Some modern vehicles incorporate stability control systems that rely on the ABS sensors to monitor the rotational behavior of the wheels. By comparing the speeds of individual wheels, the stability control system can detect and mitigate any potential loss of vehicle stability. This may involve applying brakes to specific wheels or adjusting engine power to help the driver maintain control in challenging driving conditions or during evasive maneuvers.
  • Diagnostic capabilities: The ABS sensors also provide diagnostic capabilities for the vehicle’s onboard diagnostic system. In the event of a fault or malfunction within the ABS system, the ABS sensors can transmit error codes to the vehicle’s computer, which can then be retrieved using a diagnostic scanner. This aids in the identification and troubleshooting of ABS-related issues.

The ABS sensor is typically mounted near the axle hub, with its sensor tip in close proximity to the tone ring or reluctor ring. It generates electrical signals based on the detected rotational patterns, which are then transmitted to the vehicle’s ABS control module for processing and action.

In summary, the ABS sensor plays a vital role in the context of an axle hub assembly. It monitors the rotational speed of the wheels, providing essential data for the ABS system, traction control, and stability control. The ABS sensor helps prevent wheel lockup during braking, enhances traction in slippery conditions, aids in maintaining vehicle stability, and contributes to the diagnostic capabilities of the ABS system.

axle hub

What is the importance of proper lubrication in maintaining a healthy axle hub?

Proper lubrication plays a crucial role in maintaining a healthy axle hub and ensuring its optimal performance and longevity. Here’s a detailed explanation:

An axle hub consists of several components, including wheel bearings, seals, and other internal parts. These components are subjected to high loads, friction, and heat generated during normal vehicle operation. Lubrication is essential to reduce friction, dissipate heat, and provide a protective barrier between moving parts. Here are the key reasons why proper lubrication is important for maintaining a healthy axle hub:

  • Reduced Friction: Adequate lubrication reduces friction between the moving parts of the axle hub. This minimizes wear and tear on the components and helps them operate smoothly. By reducing friction, proper lubrication helps prevent premature failure of critical parts, such as the wheel bearings.
  • Heat Dissipation: Axle hubs generate heat during operation due to the friction between the rotating components. The lubricant acts as a coolant, helping to dissipate heat and prevent excessive temperature buildup. Proper lubrication ensures that the heat is effectively managed, preventing overheating and potential damage to the axle hub.
  • Corrosion Prevention: Axle hubs are exposed to various environmental elements, including moisture, dirt, and road contaminants. These can lead to corrosion and rust, compromising the performance and structural integrity of the axle hub. Lubrication creates a protective barrier, preventing moisture and contaminants from reaching the critical components and reducing the risk of corrosion.
  • Seal Integrity: Proper lubrication helps maintain the integrity of the seals in the axle hub. Seals play a vital role in preventing the entry of contaminants and retaining the lubricant within the hub assembly. Insufficient lubrication can cause the seals to deteriorate prematurely, leading to lubricant leakage and potential damage to the axle hub.
  • Noise Reduction: Well-lubricated axle hubs operate quietly. The lubricant creates a cushioning effect, reducing noise and vibrations generated by the rotating components. This helps provide a comfortable and quiet driving experience.

It’s important to note that different axle hubs may require specific types of lubricants, such as grease or oil, depending on the design and manufacturer’s recommendations. Using the correct lubricant and following the specified lubrication intervals are crucial for maintaining a healthy axle hub. Over-lubrication or under-lubrication can lead to issues such as excess heat buildup, component damage, or inadequate protection.

Regular maintenance and inspection of the axle hub, including checking the lubricant level and quality, are essential. If any signs of contamination, leakage, or inadequate lubrication are observed, appropriate action should be taken, such as replenishing or replacing the lubricant and addressing any underlying issues.

In summary, proper lubrication is vital for maintaining a healthy axle hub. It reduces friction, dissipates heat, prevents corrosion, maintains seal integrity, and reduces noise. Adequate lubrication ensures smooth operation, prolongs the lifespan of the components, and helps prevent premature failures. Following the manufacturer’s recommendations regarding lubricant type and maintenance intervals is crucial for optimal axle hub performance and longevity.

China wholesaler Rear Axle Wheel Hub Wheel Hub Bearing Assembly for Audi A4 Vkba3606 8e0598611 Car Parts   axle extenderChina wholesaler Rear Axle Wheel Hub Wheel Hub Bearing Assembly for Audi A4 Vkba3606 8e0598611 Car Parts   axle extender
editor by CX 2023-12-04

China Standard Rear Left Wheel Hub Bearing for CZPT Lexus OE 42460-60010 42460-60020 42410-60060 2dacf044n-4L 512227 Ha594246 Grw271 9244004 Wheel Hub Unit with Best Sales

Product Description

Product Description

Product Name

Wheel hub assembly

Brand

PPB/Neutral Or As Your Request

Model Number

Front & rear wheel hub unit 42460-6571 42460-6571 42410-6.2

VKBA523 482A/472 VKBA 5038 35BWD16 VKM14103

 

 

Company Profile

ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and other parts.

Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.

 

Customer’s satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.

 

Our Advantages

More than 20 years of manufacturing and exporting experience
OEM manufacturing available
Full range, large stock
Quickly feedback
One year warranty
One-stop service
On-time delivery

Packaging & Shipping

FAQ

1. What’s the minimum order quantity?

We don’t have the minimum order quantity. We can also provide free samples, but you need to pay the freight.

     
 2. Do you provide ODM&OEM order service?

Yes, we provide ODM&OEM services to customers around the world, and we can customize different brands and different sizes of packaging boxes according to customers’ requirements.

     
3. After-sales service and warranty time

We guarantee that our products will be free from defects in materials and workmanship within 12 months from the date of delivery. The warranty is void due to improper use, incorrect installation, and physical damage.
 

4. How to place an order?

Send us an email of the models, brand, quantity, consignee information, model of transportation, and payment
Confirm payment and arrange the production.
 

5. What are your packing conditions?

We use standardized export packaging and environmental protection packaging materials. If you have a legally registered patent, we will package the goods in your brand box after receiving your authorization

6. What are your payment terms?

T/T is 30% of the payment in advance and 70% balance before delivery. Before you pay the balance, we will show you photos or videos of the products and packaging.
 

7. How long is your delivery time?

The delivery time of sample order is 3-5 days, and that of a batch order is 5-45 days. The exact delivery time depends on the item and the quantity you ordered.
 

8. Do you test all products before delivery?
Yes, according to ISO standards, we have professional Q/C personnel, precision testing instruments, and an internal inspection system. We control the quality of every process from material receiving to packaging to ensure that you receive high-quality products

 

The 5 components of an axle, their function and installation

If you’re considering replacing an axle in your vehicle, you should first understand what it is. It is the component that transmits electricity from 1 part to another. Unlike a fixed steering wheel, the axles are movable. The following article will discuss the 5 components of the half shaft, their function and installation. Hopefully you were able to identify the correct axle for your vehicle. Here are some common problems you may encounter along the way.
Driveshaft

five components

The 5 components of the shaft are flange, bearing surface, spline teeth, spline pitch and pressure angle. The higher the number of splines, the stronger the shaft. The maximum stress that the shaft can withstand increases with the number of spline teeth and spline pitch. The diameter of the shaft times the cube of the pressure angle and spline pitch determines the maximum stress the shaft can withstand. For extreme load applications, use axles made from SAE 4340 and SAE 1550 materials. In addition to these 2 criteria, spline rolling produces a finer grain structure in the material. Cutting the splines reduces the strength of the shaft by 30% and increases stress.
The asymmetric length of the shaft implies different torsional stiffness. A longer shaft, usually the driver’s side, can handle more twist angles before breaking. When the long axis is intact, the short axis usually fails, but this does not always happen. Some vehicles have short axles that permanently break, causing the same failure rate for both. It would be ideal if both shafts were the same length, they would share the same load.
In addition to the spline pitch, the diameter of the shaft spline is another important factor. The small diameter of a spline is the radius at which it resists twisting. Therefore, the splines must be able to absorb shock loads and shocks while returning to their original shape. To achieve these goals, the spline pitch should be 30 teeth or less, which is standard on Chrysler 8.75-inch and GM 12-bolt axles. However, a Ford 8.8-inch axle may have 28 or 31 tooth splines.
In addition to the CV joints, the axles also include CV joints, which are located on each end of the axle. ACV joints, also known as CV joints, use a special type of bearing called a pinion. This is a nut that meshes with the side gear to ensure proper shaft alignment. If you notice a discrepancy, take your car to a shop and have it repaired immediately.

Function

Axles play several important roles in a vehicle. It transfers power from the transmission to the rear differential gearbox and the wheels. The shaft is usually made of steel with cardan joints at both ends. Shaft Shafts can be stationary or rotating. They are all creatures that can transmit electricity and loads. Here are some of their functions. Read on to learn more about axles. Some of their most important features are listed below.
The rear axle supports the weight of the vehicle and is connected to the front axle through the axle. The rear axle is suspended from the body, frame and axle housing, usually spring loaded, to cushion the vehicle. The driveshaft, also called the propshaft, is located between the rear wheels and the differential. It transfers power from the differential to the drive wheels.
The shaft is made of mild steel or alloy steel. The latter is stronger, more corrosion-resistant and suitable for special environments. Forged for large diameter shafts. The cross section of the shaft is circular. While they don’t transmit torque, they do transmit bending moment. This allows the drive train to rotate. If you’re looking for new axles, it’s worth learning more about how they work.
The shaft consists of 3 distinct parts: the main shaft and the hub. The front axle assembly has a main shaft, while the rear axle is fully floating. Axles are usually made of chrome molybdenum steel. The alloy’s chromium content helps the axle maintain its tensile strength even under extreme conditions. These parts are welded into the axle housing.
Driveshaft

Material

The material used to make the axle depends on the purpose of the vehicle. For example, overload shafts are usually made of SAE 4340 or 1550 steel. These steels are high strength low alloy alloys that are resistant to bending and buckling. Chromium alloys, for example, are made from steel and have chromium and molybdenum added to increase their toughness and durability.
The major diameter of the shaft is measured at the tip of the spline teeth, while the minor diameter is measured at the bottom of the groove between the teeth. These 2 diameters must match, otherwise the half shaft will not work properly. It is important to understand that the brittleness of the material should not exceed what is required to withstand normal torque and twisting, otherwise it will become unstable. The material used to make the axles should be strong enough to carry the weight of a heavy truck, but must also be able to withstand torque while still being malleable.
Typically, the shaft is case hardened using an induction process. Heat is applied to the surface of the steel to form martensite and austenite. The shell-core interface transitions from compression to tension, and the peak stress level depends on the process variables used, including heating time, residence time, and hardenability of the steel. Some common materials used for axles are listed below. If you’re not sure which material is best for your axle, consider the following guide.
The axle is the main component of the axle and transmits the transmission motion to the wheels. In addition, they regulate the drive between the rear hub and the differential sun gear. The axle is supported by axle bearings and guided to the path the wheels need to follow. Therefore, they require proper materials, processing techniques and thorough inspection methods to ensure lasting performance. You can start by selecting the material for the shaft.
Choosing the right alloy for the axle is critical. You will want to find an alloy with a low carbon content so it can harden to the desired level. This is an important consideration because the hardenability of the alloy is important to the durability and fatigue life of the axle. By choosing the right alloy, you will be able to minimize these problems and improve the performance of your axle. If you have no other choice, you can always choose an alloy with a higher carbon content, but it will cost you more money.
Driveshaft

Install

The process of installing a new shaft is simple. Just loosen the axle nut and remove the set bolt. You may need to tap a few times to get a good seal. After installation, check the shaft at the points marked “A” and “D” to make sure it is in the correct position. Then, press the “F” points on the shaft flange until the points are within 0.002″ of the runout.
Before attempting to install the shaft, check the bearings to make sure they are aligned. Some bearings may have backlash. To determine the amount of differential clearance, use a screwdriver or clamp lever to check. Unless it’s caused by a loose differential case hub, there shouldn’t be any play in the axle bearings. You may need to replace the differential case if the axles are not mounted tightly. Thread adjusters are an option for adjusting drive gear runout. Make sure the dial indicator is mounted on the lead stud and loaded so that the plunger is at right angles to the drive gear.
To install the axle, lift the vehicle with a jack or crane. The safety bracket should be installed under the frame rails. If the vehicle is on a jack, the rear axle should be in the rebound position to ensure working clearance. Label the drive shaft assemblies and reinstall them in their original positions. Once everything is back in place, use a 2-jaw puller to pry the yoke and flange off the shaft.
If you’ve never installed a half shaft before, be sure to read these simple steps to get it right. First, check the bearing surfaces to make sure they are clean and undamaged. Replace them if they look battered or dented. Next, remove the seal attached to the bushing hole. Make sure the shaft is installed correctly and the bearing surfaces are level. After completing the installation process, you may need to replace the bearing seals.

China Standard Rear Left Wheel Hub Bearing for CZPT Lexus OE 42460-60010 42460-60020 42410-60060 2dacf044n-4L 512227 Ha594246 Grw271 9244004 Wheel Hub Unit   with Best SalesChina Standard Rear Left Wheel Hub Bearing for CZPT Lexus OE 42460-60010 42460-60020 42410-60060 2dacf044n-4L 512227 Ha594246 Grw271 9244004 Wheel Hub Unit   with Best Sales

China Best Sales Bicycle 36 Hole Sealed Bearing Rear Hub wholesaler

Product Description

Bicycle 36 Hole Sealed Bearing Rear Hub
 

Product Description

Model: HC-HUB-001
Diameter: a). M10 b). According to customer’s request
Color: a). ED b). UCP
Material: a).Steel b). Aluminum 
  a). Normal Cone b). Big Edge Cone
Hub Lock Nut: a). 5/16″ b). 3/8″
Nut: a). Normal Nut b). Flange Nut
Spacer: Yes  
Brand Name: HONGCHI  
Applicable Bicycle: Road Bicycle, Traditional Bicycle, Heavy-duty Bicycle
Minimum Order Quantity: 1000 Sets  
Place of Origin: ZheJiang  
Packaging Details: a). 20 Doz/Ctn  
Delivery Time: a). 25 days after receiving deposit b). according to order qty
Payment Terms: a). T/T b). L/C
Supply Ability: 50,000 pieces per Month  

 

 

Packaging & Shipping

 

 

Company Profile

ZheJiang HongChi bicycle Co. Ltd located in the biggest bicycle accessory base. We get a wonderful geography, convenient
traffic which near to the Jingzhu and Xihu (West Lake) Dis.g high speed way. And our company is closed to the famous China Bicycle
Accessory Town.

We are professional manufacturer in producing chain wheel&crank, saddle, inner tube, tyre, pedal, front axle, rear axle, MTB bicycle, BMX bicycle, child toys, etc. branded “HongChi”. Meanwhile, we have the autonomy in operation of the import and
export business. Our company has a dozen of great profession product machines. And our productions get a well sale to the bicycle factory and accessories manufactures production all over the country, which based on good quality, cheap price, and perfect after-sales service. So our export sales have been growing year by year. Our productions are spreading over 40 countries and regions including Southeast Asia, East Europe, Africa, and South America.

Hard work and CZPT pursuit is our spirit. Quality first and customer first is our principle. Everyone in HongChi Company is sincerely inviting the colleague all over the world to have cooperation and a better future.

Our Advantages

1. Manufacturer
2. Fashion design
3. Best service
4. Super quality
5. Reasonable price
6. Small MOQ
7. Well-deserved reputation
8. Fast delivery&convient transportation
9. Good after-sales service

FAQ

 

An Overview of Worm Shafts and Gears

This article provides an overview of worm shafts and gears, including the type of toothing and deflection they experience. Other topics covered include the use of aluminum versus bronze worm shafts, calculating worm shaft deflection and lubrication. A thorough understanding of these issues will help you to design better gearboxes and other worm gear mechanisms. For further information, please visit the related websites. We also hope that you will find this article informative.
worm shaft

Double throat worm gears

The pitch diameter of a worm and the pitch of its worm wheel must be equal. The 2 types of worm gears have the same pitch diameter, but the difference lies in their axial and circular pitches. The pitch diameter is the distance between the worm’s teeth along its axis and the pitch diameter of the larger gear. Worms are made with left-handed or right-handed threads. The lead of the worm is the distance a point on the thread travels during 1 revolution of the worm gear. The backlash measurement should be made in a few different places on the gear wheel, as a large amount of backlash implies tooth spacing.
A double-throat worm gear is designed for high-load applications. It provides the tightest connection between worm and gear. It is crucial to mount a worm gear assembly correctly. The keyway design requires several points of contact, which block shaft rotation and help transfer torque to the gear. After determining the location of the keyway, a hole is drilled into the hub, which is then screwed into the gear.
The dual-threaded design of worm gears allows them to withstand heavy loads without slipping or tearing out of the worm. A double-throat worm gear provides the tightest connection between worm and gear, and is therefore ideal for hoisting applications. The self-locking nature of the worm gear is another advantage. If the worm gears are designed well, they are excellent for reducing speeds, as they are self-locking.
When choosing a worm, the number of threads that a worm has is critical. Thread starts determine the reduction ratio of a pair, so the higher the threads, the greater the ratio. The same is true for the worm helix angles, which can be one, two, or 3 threads long. This varies between a single thread and a double-throat worm gear, and it is crucial to consider the helix angle when selecting a worm.
Double-throat worm gears differ in their profile from the actual gear. Double-throat worm gears are especially useful in applications where noise is an issue. In addition to their low noise, worm gears can absorb shock loads. A double-throat worm gear is also a popular choice for many different types of applications. These gears are also commonly used for hoisting equipment. Its tooth profile is different from that of the actual gear.
worm shaft

Bronze or aluminum worm shafts

When selecting a worm, a few things should be kept in mind. The material of the shaft should be either bronze or aluminum. The worm itself is the primary component, but there are also addendum gears that are available. The total number of teeth on both the worm and the addendum gear should be greater than 40. The axial pitch of the worm needs to match the circular pitch of the larger gear.
The most common material used for worm gears is bronze because of its desirable mechanical properties. Bronze is a broad term referring to various copper alloys, including copper-nickel and copper-aluminum. Bronze is most commonly created by alloying copper with tin and aluminum. In some cases, this combination creates brass, which is a similar metal to bronze. The latter is less expensive and suitable for light loads.
There are many benefits to bronze worm gears. They are strong and durable, and they offer excellent wear-resistance. In contrast to steel worms, bronze worm gears are quieter than their counterparts. They also require no lubrication and are corrosion-resistant. Bronze worms are popular with small, light-weight machines, as they are easy to maintain. You can read more about worm gears in CZPT’s CZPT.
Although bronze or aluminum worm shafts are the most common, both materials are equally suitable for a variety of applications. A bronze shaft is often called bronze but may actually be brass. Historically, worm gears were made of SAE 65 gear bronze. However, newer materials have been introduced. SAE 65 gear bronze (UNS C90700) remains the preferred material. For high-volume applications, the material savings can be considerable.
Both types of worms are essentially the same in size and shape, but the lead on the left and right tooth surfaces can vary. This allows for precise adjustment of the backlash on a worm without changing the center distance between the worm gear. The different sizes of worms also make them easier to manufacture and maintain. But if you want an especially small worm for an industrial application, you should consider bronze or aluminum.

Calculation of worm shaft deflection

The centre-line distance of a worm gear and the number of worm teeth play a crucial role in the deflection of the rotor. These parameters should be entered into the tool in the same units as the main calculation. The selected variant is then transferred to the main calculation. The deflection of the worm gear can be calculated from the angle at which the worm teeth shrink. The following calculation is helpful for designing a worm gear.
Worm gears are widely used in industrial applications due to their high transmittable torques and large gear ratios. Their hard/soft material combination makes them ideally suited for a wide range of applications. The worm shaft is typically made of case-hardened steel, and the worm wheel is fabricated from a copper-tin-bronze alloy. In most cases, the wheel is the area of contact with the gear. Worm gears also have a low deflection, as high shaft deflection can affect the transmission accuracy and increase wear.
Another method for determining worm shaft deflection is to use the tooth-dependent bending stiffness of a worm gear’s toothing. By calculating the stiffness of the individual sections of a worm shaft, the stiffness of the entire worm can be determined. The approximate tooth area is shown in figure 5.
Another way to calculate worm shaft deflection is by using the FEM method. The simulation tool uses an analytical model of the worm gear shaft to determine the deflection of the worm. It is based on a two-dimensional model, which is more suitable for simulation. Then, you need to input the worm gear’s pitch angle and the toothing to calculate the maximum deflection.
worm shaft

Lubrication of worm shafts

In order to protect the gears, worm drives require lubricants that offer excellent anti-wear protection, high oxidation resistance, and low friction. While mineral oil lubricants are widely used, synthetic base oils have better performance characteristics and lower operating temperatures. The Arrhenius Rate Rule states that chemical reactions double every 10 degrees C. Synthetic lubricants are the best choice for these applications.
Synthetics and compounded mineral oils are the most popular lubricants for worm gears. These oils are formulated with mineral basestock and 4 to 6 percent synthetic fatty acid. Surface-active additives give compounded gear oils outstanding lubricity and prevent sliding wear. These oils are suited for high-speed applications, including worm gears. However, synthetic oil has the disadvantage of being incompatible with polycarbonate and some paints.
Synthetic lubricants are expensive, but they can increase worm gear efficiency and operating life. Synthetic lubricants typically fall into 2 categories: PAO synthetic oils and EP synthetic oils. The latter has a higher viscosity index and can be used at a range of temperatures. Synthetic lubricants often contain anti-wear additives and EP (anti-wear).
Worm gears are frequently mounted over or under the gearbox. The proper lubrication is essential to ensure the correct mounting and operation. Oftentimes, inadequate lubrication can cause the unit to fail sooner than expected. Because of this, a technician may not make a connection between the lack of lube and the failure of the unit. It is important to follow the manufacturer’s recommendations and use high-quality lubricant for your gearbox.
Worm drives reduce backlash by minimizing the play between gear teeth. Backlash can cause damage if unbalanced forces are introduced. Worm drives are lightweight and durable because they have minimal moving parts. In addition, worm drives are low-noise and vibration. In addition, their sliding motion scrapes away excess lubricant. The constant sliding action generates a high amount of heat, which is why superior lubrication is critical.
Oils with a high film strength and excellent adhesion are ideal for lubrication of worm gears. Some of these oils contain sulfur, which can etch a bronze gear. In order to avoid this, it is imperative to use a lubricant that has high film strength and prevents asperities from welding. The ideal lubricant for worm gears is 1 that provides excellent film strength and does not contain sulfur.

China Best Sales Bicycle 36 Hole Sealed Bearing Rear Hub   wholesaler China Best Sales Bicycle 36 Hole Sealed Bearing Rear Hub   wholesaler

China Professional Sealed Bearing Front Rear Disc Brake MTB Bicycle Wheel Hub with Hot selling

Product Description

Product Details
Specificiation

Item Value
Place of Origin HangZhou, ZheJiang
Material Steel
Position Front
Feature Waterproof
Application Kids’ Bikes/Mountain Bikes/Road Bicycles
MOQ 200 pcs

Packing & Shipping

Company Profile
ZheJiang HongChi bicycle Co. Ltd located in the biggest bicycle accessory base. We get a wonderful geography, convenient traffic which near to the Jingzhu and Xihu (West Lake) Dis.g high speed way. And our company is closed to the famous China Bicycle Accessory Town.
We are professional manufacturer in producing chain wheel&crank, saddle, inner tube, tyre, pedal, front axle, rear axle, MTB bicycle, BMX bicycle, child toys, etc. branded “HongChi”. Meanwhile, we have the autonomy in operation of the import and export business. Our company has a dozen of great profession product machines. And our productions get a well sale to the bicycle factory and accessories manufactures production all over the country, which based on good quality, cheap price, and perfect after-sales service. So our export sales have been growing year by year. Our productions are spreading over 40 countries and regions including Southeast Asia, East Europe, Africa, and South America.
Hard work and CZPT pursuit is our spirit. Quality first and customer first is our principle. Everyone in HongChi Company is sincerely inviting the colleague all over the world to have cooperation and a better future.
Why Choose Us
FAQ
♥ When can get the price?

We usually quote within 24 hours after getting your detailed requirements,like size,quantity etc. If it is an urgent order, you can call us directly.

♥ How can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

♥ Why should you buy from us not from other suppliers?
Our company is located in the superior environment of ZheJiang province, with rich resources, for our company to provide a stable and sufficient production of raw materials. Our company also has advanced production equipment, to ensure the quality of product

♥What is your terms of delivery?
We accept FOB, CFR, CIF, EXW, etc. You can choose the most convenient way for you. Besides that, we can also shipping by Air and Express.

♥ Notice
Please note that the price on alibaba is a rough price.The actual price will depend on raw materials, exchange rate ,wage and your order quantity. Hope to cooperate with you, thank you!

What is a drive shaft?

If you notice a clicking noise while driving, it is most likely the driveshaft. An experienced auto mechanic will be able to tell you if the noise is coming from both sides or from 1 side. If it only happens on 1 side, you should check it. If you notice noise on both sides, you should contact a mechanic. In either case, a replacement driveshaft should be easy to find.
air-compressor

The drive shaft is a mechanical part

A driveshaft is a mechanical device that transmits rotation and torque from the engine to the wheels of the vehicle. This component is essential to the operation of any driveline, as the mechanical power from the engine is transmitted to the PTO (power take-off) shaft, which hydraulically transmits that power to connected equipment. Different drive shafts contain different combinations of joints to compensate for changes in shaft length and angle. Some types of drive shafts include connecting shafts, internal constant velocity joints, and external fixed joints. They also contain anti-lock system rings and torsional dampers to prevent overloading the axle or causing the wheels to lock.
Although driveshafts are relatively light, they need to handle a lot of torque. Torque applied to the drive shaft produces torsional and shear stresses. Because they have to withstand torque, these shafts are designed to be lightweight and have little inertia or weight. Therefore, they usually have a joint, coupling or rod between the 2 parts. Components can also be bent to accommodate changes in the distance between them.
The drive shaft can be made from a variety of materials. The most common material for these components is steel, although alloy steels are often used for high-strength applications. Alloy steel, chromium or vanadium are other materials that can be used. The type of material used depends on the application and size of the component. In many cases, metal driveshafts are the most durable and cheapest option. Plastic shafts are used for light duty applications and have different torque levels than metal shafts.

It transfers power from the engine to the wheels

A car’s powertrain consists of an electric motor, transmission, and differential. Each section performs a specific job. In a rear-wheel drive vehicle, the power generated by the engine is transmitted to the rear tires. This arrangement improves braking and handling. The differential controls how much power each wheel receives. The torque of the engine is transferred to the wheels according to its speed.
The transmission transfers power from the engine to the wheels. It is also called “transgender”. Its job is to ensure power is delivered to the wheels. Electric cars cannot drive themselves and require a gearbox to drive forward. It also controls how much power reaches the wheels at any given moment. The transmission is the last part of the power transmission chain. Despite its many names, the transmission is the most complex component of a car’s powertrain.
The driveshaft is a long steel tube that transmits mechanical power from the transmission to the wheels. Cardan joints connect to the drive shaft and provide flexible pivot points. The differential assembly is mounted on the drive shaft, allowing the wheels to turn at different speeds. The differential allows the wheels to turn at different speeds and is very important when cornering. Axles are also important to the performance of the car.

It has a rubber boot that protects it from dust and moisture

To keep this boot in good condition, you should clean it with cold water and a rag. Never place it in the dryer or in direct sunlight. Heat can deteriorate the rubber and cause it to shrink or crack. To prolong the life of your rubber boots, apply rubber conditioner to them regularly. Indigenous peoples in the Amazon region collect latex sap from the bark of rubber trees. Then they put their feet on the fire to solidify the sap.
air-compressor

it has a U-shaped connector

The drive shaft has a U-joint that transfers rotational energy from the engine to the axle. Defective gimbal joints can cause vibrations when the vehicle is in motion. This vibration is often mistaken for a wheel balance problem. Wheel balance problems can cause the vehicle to vibrate while driving, while a U-joint failure can cause the vehicle to vibrate when decelerating and accelerating, and stop when the vehicle is stopped.
The drive shaft is connected to the transmission and differential using a U-joint. It allows for small changes in position between the 2 components. This prevents the differential and transmission from remaining perfectly aligned. The U-joint also allows the drive shaft to be connected unconstrained, allowing the vehicle to move. Its main purpose is to transmit electricity. Of all types of elastic couplings, U-joints are the oldest.
Your vehicle’s U-joints should be inspected at least twice a year, and the joints should be greased. When checking the U-joint, you should hear a dull sound when changing gears. A clicking sound indicates insufficient grease in the bearing. If you hear or feel vibrations when shifting gears, you may need to service the bearings to prolong their life.

it has a slide-in tube

The telescopic design is a modern alternative to traditional driveshaft designs. This innovative design is based on an unconventional design philosophy that combines advances in material science and manufacturing processes. Therefore, they are more efficient and lighter than conventional designs. Slide-in tubes are a simple and efficient design solution for any vehicle application. Here are some of its benefits. Read on to learn why this type of shaft is ideal for many applications.
The telescopic drive shaft is an important part of the traditional automobile transmission system. These driveshafts allow linear motion of the 2 components, transmitting torque and rotation throughout the vehicle’s driveline. They also absorb energy if the vehicle collides. Often referred to as foldable driveshafts, their popularity is directly dependent on the evolution of the automotive industry.
air-compressor

It uses a bearing press to replace worn or damaged U-joints

A bearing press is a device that uses a rotary press mechanism to install or remove worn or damaged U-joints from a drive shaft. With this tool, you can replace worn or damaged U-joints in your car with relative ease. The first step involves placing the drive shaft in the vise. Then, use the 11/16″ socket to press the other cup in far enough to install the clips. If the cups don’t fit, you can use a bearing press to remove them and repeat the process. After removing the U-joint, use a grease nipple Make sure the new grease nipple is installed correctly.
Worn or damaged U-joints are a major source of driveshaft failure. If 1 of them were damaged or damaged, the entire driveshaft could dislocate and the car would lose power. Unless you have a professional mechanic doing the repairs, you will have to replace the entire driveshaft. Fortunately, there are many ways to do this yourself.
If any of these warning signs appear on your vehicle, you should consider replacing the damaged or worn U-joint. Common symptoms of damaged U-joints include rattling or periodic squeaking when moving, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these symptoms, take your vehicle to a qualified mechanic for a full inspection. Neglecting to replace a worn or damaged u-joint on the driveshaft can result in expensive and dangerous repairs and can cause significant damage to your vehicle.

China Professional Sealed Bearing Front Rear Disc Brake MTB Bicycle Wheel Hub   with Hot sellingChina Professional Sealed Bearing Front Rear Disc Brake MTB Bicycle Wheel Hub   with Hot selling

China manufacturer High Quality Auto Bearing Rear Wheel Hub for CZPT Tacoma 42450-04010 Wheel Hub Assembly with Hot selling

Product Description

Product Description

Product Name

Wheel hub assembly

Brand

PPB/Neutral Or As Your Request

Model Number

Front & rear wheel hub unit 42460-6571 42460-6571 42410-6.2

VKBA523 482A/472 VKBA 5038 35BWD16 VKM14103

 

 

Company Profile

ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and other parts.

Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.

 

Customer’s satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.

 

Our Advantages

More than 20 years of manufacturing and exporting experience
OEM manufacturing available
Full range, large stock
Quickly feedback
One year warranty
One-stop service
On-time delivery

Packaging & Shipping

FAQ

1. What’s the minimum order quantity?

We don’t have the minimum order quantity. We can also provide free samples, but you need to pay the freight.

     
 2. Do you provide ODM&OEM order service?

Yes, we provide ODM&OEM services to customers around the world, and we can customize different brands and different sizes of packaging boxes according to customers’ requirements.

     
3. After-sales service and warranty time

We guarantee that our products will be free from defects in materials and workmanship within 12 months from the date of delivery. The warranty is void due to improper use, incorrect installation, and physical damage.
 

4. How to place an order?

Send us an email of the models, brand, quantity, consignee information, model of transportation, and payment
Confirm payment and arrange the production.
 

5. What are your packing conditions?

We use standardized export packaging and environmental protection packaging materials. If you have a legally registered patent, we will package the goods in your brand box after receiving your authorization

6. What are your payment terms?

T/T is 30% of the payment in advance and 70% balance before delivery. Before you pay the balance, we will show you photos or videos of the products and packaging.
 

7. How long is your delivery time?

The delivery time of sample order is 3-5 days, and that of a batch order is 5-45 days. The exact delivery time depends on the item and the quantity you ordered.
 

8. Do you test all products before delivery?
Yes, according to ISO standards, we have professional Q/C personnel, precision testing instruments, and an internal inspection system. We control the quality of every process from material receiving to packaging to ensure that you receive high-quality products

 

How to Calculate Stiffness, Centering Force, Wear and Fatigue Failure of Spline Couplings

There are various types of spline couplings. These couplings have several important properties. These properties are: Stiffness, Involute splines, Misalignment, Wear and fatigue failure. To understand how these characteristics relate to spline couplings, read this article. It will give you the necessary knowledge to determine which type of coupling best suits your needs. Keeping in mind that spline couplings are usually spherical in shape, they are made of steel.
splineshaft

Involute splines

An effective side interference condition minimizes gear misalignment. When 2 splines are coupled with no spline misalignment, the maximum tensile root stress shifts to the left by 5 mm. A linear lead variation, which results from multiple connections along the length of the spline contact, increases the effective clearance or interference by a given percentage. This type of misalignment is undesirable for coupling high-speed equipment.
Involute splines are often used in gearboxes. These splines transmit high torque, and are better able to distribute load among multiple teeth throughout the coupling circumference. The involute profile and lead errors are related to the spacing between spline teeth and keyways. For coupling applications, industry practices use splines with 25 to 50-percent of spline teeth engaged. This load distribution is more uniform than that of conventional single-key couplings.
To determine the optimal tooth engagement for an involved spline coupling, Xiangzhen Xue and colleagues used a computer model to simulate the stress applied to the splines. The results from this study showed that a “permissible” Ruiz parameter should be used in coupling. By predicting the amount of wear and tear on a crowned spline, the researchers could accurately predict how much damage the components will sustain during the coupling process.
There are several ways to determine the optimal pressure angle for an involute spline. Involute splines are commonly measured using a pressure angle of 30 degrees. Similar to gears, involute splines are typically tested through a measurement over pins. This involves inserting specific-sized wires between gear teeth and measuring the distance between them. This method can tell whether the gear has a proper tooth profile.
The spline system shown in Figure 1 illustrates a vibration model. This simulation allows the user to understand how involute splines are used in coupling. The vibration model shows 4 concentrated mass blocks that represent the prime mover, the internal spline, and the load. It is important to note that the meshing deformation function represents the forces acting on these 3 components.
splineshaft

Stiffness of coupling

The calculation of stiffness of a spline coupling involves the measurement of its tooth engagement. In the following, we analyze the stiffness of a spline coupling with various types of teeth using 2 different methods. Direct inversion and blockwise inversion both reduce CPU time for stiffness calculation. However, they require evaluation submatrices. Here, we discuss the differences between these 2 methods.
The analytical model for spline couplings is derived in the second section. In the third section, the calculation process is explained in detail. We then validate this model against the FE method. Finally, we discuss the influence of stiffness nonlinearity on the rotor dynamics. Finally, we discuss the advantages and disadvantages of each method. We present a simple yet effective method for estimating the lateral stiffness of spline couplings.
The numerical calculation of the spline coupling is based on the semi-analytical spline load distribution model. This method involves refined contact grids and updating the compliance matrix at each iteration. Hence, it consumes significant computational time. Further, it is difficult to apply this method to the dynamic analysis of a rotor. This method has its own limitations and should be used only when the spline coupling is fully investigated.
The meshing force is the force generated by a misaligned spline coupling. It is related to the spline thickness and the transmitting torque of the rotor. The meshing force is also related to the dynamic vibration displacement. The result obtained from the meshing force analysis is given in Figures 7, 8, and 9.
The analysis presented in this paper aims to investigate the stiffness of spline couplings with a misaligned spline. Although the results of previous studies were accurate, some issues remained. For example, the misalignment of the spline may cause contact damages. The aim of this article is to investigate the problems associated with misaligned spline couplings and propose an analytical approach for estimating the contact pressure in a spline connection. We also compare our results to those obtained by pure numerical approaches.

Misalignment

To determine the centering force, the effective pressure angle must be known. Using the effective pressure angle, the centering force is calculated based on the maximum axial and radial loads and updated Dudley misalignment factors. The centering force is the maximum axial force that can be transmitted by friction. Several published misalignment factors are also included in the calculation. A new method is presented in this paper that considers the cam effect in the normal force.
In this new method, the stiffness along the spline joint can be integrated to obtain a global stiffness that is applicable to torsional vibration analysis. The stiffness of bearings can also be calculated at given levels of misalignment, allowing for accurate estimation of bearing dimensions. It is advisable to check the stiffness of bearings at all times to ensure that they are properly sized and aligned.
A misalignment in a spline coupling can result in wear or even failure. This is caused by an incorrectly aligned pitch profile. This problem is often overlooked, as the teeth are in contact throughout the involute profile. This causes the load to not be evenly distributed along the contact line. Consequently, it is important to consider the effect of misalignment on the contact force on the teeth of the spline coupling.
The centre of the male spline in Figure 2 is superposed on the female spline. The alignment meshing distances are also identical. Hence, the meshing force curves will change according to the dynamic vibration displacement. It is necessary to know the parameters of a spline coupling before implementing it. In this paper, the model for misalignment is presented for spline couplings and the related parameters.
Using a self-made spline coupling test rig, the effects of misalignment on a spline coupling are studied. In contrast to the typical spline coupling, misalignment in a spline coupling causes fretting wear at a specific position on the tooth surface. This is a leading cause of failure in these types of couplings.
splineshaft

Wear and fatigue failure

The failure of a spline coupling due to wear and fatigue is determined by the first occurrence of tooth wear and shaft misalignment. Standard design methods do not account for wear damage and assess the fatigue life with big approximations. Experimental investigations have been conducted to assess wear and fatigue damage in spline couplings. The tests were conducted on a dedicated test rig and special device connected to a standard fatigue machine. The working parameters such as torque, misalignment angle, and axial distance have been varied in order to measure fatigue damage. Over dimensioning has also been assessed.
During fatigue and wear, mechanical sliding takes place between the external and internal splines and results in catastrophic failure. The lack of literature on the wear and fatigue of spline couplings in aero-engines may be due to the lack of data on the coupling’s application. Wear and fatigue failure in splines depends on a number of factors, including the material pair, geometry, and lubrication conditions.
The analysis of spline couplings shows that over-dimensioning is common and leads to different damages in the system. Some of the major damages are wear, fretting, corrosion, and teeth fatigue. Noise problems have also been observed in industrial settings. However, it is difficult to evaluate the contact behavior of spline couplings, and numerical simulations are often hampered by the use of specific codes and the boundary element method.
The failure of a spline gear coupling was caused by fatigue, and the fracture initiated at the bottom corner radius of the keyway. The keyway and splines had been overloaded beyond their yield strength, and significant yielding was observed in the spline gear teeth. A fracture ring of non-standard alloy steel exhibited a sharp corner radius, which was a significant stress raiser.
Several components were studied to determine their life span. These components include the spline shaft, the sealing bolt, and the graphite ring. Each of these components has its own set of design parameters. However, there are similarities in the distributions of these components. Wear and fatigue failure of spline couplings can be attributed to a combination of the 3 factors. A failure mode is often defined as a non-linear distribution of stresses and strains.

China manufacturer High Quality Auto Bearing Rear Wheel Hub for CZPT Tacoma 42450-04010 Wheel Hub Assembly   with Hot sellingChina manufacturer High Quality Auto Bearing Rear Wheel Hub for CZPT Tacoma 42450-04010 Wheel Hub Assembly   with Hot selling

China best Rear Axle Wheel Hub & Bearing Assembly for Audi A4 Vkba3606 8e0598611 near me manufacturer

Product Description

Basic information:

Description Rear Axle Wheel Hub & Bearing Assembly For AUDI A4 VKBA3606 8E571611
Material Chrome steel Gcr15
Application For AUDI
For SEAT
Position Rear wheel bearing assembly
With ABS with ABS sensor ring
Bolts  5 holes
Weight 2.3 kg
Brand SI, PPB, or customized
Packing Neutral, SI, PPB brand packing or customized
OEM/ODM service Yes
Manufacture place ZHangZhoug, China
MOQ 50 PCS
OEM replacement Yes
Inspection 1
GSP : 9232014K
OPTIMAL : 157171
S-KF : VKBA 3606
SNR : R157.27

Application:
For AUDI A4 (8E2, B6) (2000/11 – 2004/12)
For AUDI A4 Avant (8E5, B6) (2001/04 – 2004/12)
For AUDI A4 Convertible (8H7, B6, 8HE, B7) (2002/04 – 2009/03)
For AUDI A4 (8EC, B7) (2004/11 – 2008/06)
For AUDI A4 Avant (8ED, B7) (2004/11 – 2008/06)
For AUDI  (FAW)A4 Saloon (8E2, B6) (2002/08 – 2005/07)
For AUDI  (FAW)A4 Saloon (8EC, B7) (2005/07 – 2008/09)
For SEAT EXEO (3R2) (2008/12 – /)
For SEAT EXEO ST (3R5) (2009/05 – /)

Wheel bearing kit parts list:
Bearing 1
Sealing/Protective Cap 1
Screw 1

Packing and Delivery:

Work shop:

Exhibitions:

FAQ:
Q1.What is your shipping logistic?
Re: DHL, TNT, FedEx express, by air/sea/train.

Q2:What’s the MOQ?
Re: For the wheel hub assembly. The MOQ is always 50 sets. If ordering together with other models, small quantities can be organized. But need more time due to the production schedule.

Q3. What are your goods of packing?
Re: Generally, our goods will be packed in Neutral white or brown boxes for the hub bearing unit. Our brand packing SI & CZPT are offered. If you have any other packing requests, we shall also handle them.

Q4. What is your sample policy?
Re: We can supply the sample if we have ready parts in stock.

Q5. Do you have any certificates?
Re: Yes, we have the certificate of ISO9001:2015.

Q6:Any warranty of your products.
Re: Sure, We are offering a guarantee for 12 months or 40,000-50,000 km for the aftermarket.
 

Q7: How can I make an inquiry?

Re: You can contact us by email, telephone, WhatsApp, , etc.

 

Q8: How long can reply inquiry?

Re: Within 24 hours.

 

Q9: What’s the delivery time?

Re: Ready stock 10-15 days, production for 30 to 45 days.

 

Q10: How do you maintain our good business relationship?

Re: 1. Keep stable, reliable quality, competitive price to ensure our customer’s benefit;

2. Optimal lead time.

3. Keep customers updated about the new goods.

4. Make customers satisfaction as our main goal.

 

Q11: Can we visit the company & factory?

Re: Yes, welcome for your visit & business discussion.

 

Drive shaft type

The driveshaft transfers torque from the engine to the wheels and is responsible for the smooth running of the vehicle. Its design had to compensate for differences in length and angle. It must also ensure perfect synchronization between its joints. The drive shaft should be made of high-grade materials to achieve the best balance of stiffness and elasticity. There are 3 main types of drive shafts. These include: end yokes, tube yokes and tapered shafts.
air-compressor

tube yoke

Tube yokes are shaft assemblies that use metallic materials as the main structural component. The yoke includes a uniform, substantially uniform wall thickness, a first end and an axially extending second end. The first diameter of the drive shaft is greater than the second diameter, and the yoke further includes a pair of opposing lugs extending from the second end. These lugs have holes at the ends for attaching the axle to the vehicle.
By retrofitting the driveshaft tube end into a tube fork with seat. This valve seat transmits torque to the driveshaft tube. The fillet weld 28 enhances the torque transfer capability of the tube yoke. The yoke is usually made of aluminum alloy or metal material. It is also used to connect the drive shaft to the yoke. Various designs are possible.
The QU40866 tube yoke is used with an external snap ring type universal joint. It has a cup diameter of 1-3/16″ and an overall width of 4½”. U-bolt kits are another option. It has threaded legs and locks to help secure the yoke to the drive shaft. Some performance cars and off-road vehicles use U-bolts. Yokes must be machined to accept U-bolts, and U-bolt kits are often the preferred accessory.
The end yoke is the mechanical part that connects the drive shaft to the stub shaft. These yokes are usually designed for specific drivetrain components and can be customized to your needs. Pat’s drivetrain offers OEM replacement and custom flanged yokes.
If your tractor uses PTO components, the cross and bearing kit is the perfect tool to make the connection. Additionally, cross and bearing kits help you match the correct yoke to the shaft. When choosing a yoke, be sure to measure the outside diameter of the U-joint cap and the inside diameter of the yoke ears. After taking the measurements, consult the cross and bearing identification drawings to make sure they match.
While tube yokes are usually easy to replace, the best results come from a qualified machine shop. Dedicated driveshaft specialists can assemble and balance finished driveshafts. If you are unsure of a particular aspect, please refer to the TM3000 Driveshaft and Cardan Joint Service Manual for more information. You can also consult an excerpt from the TSB3510 manual for information on angle, vibration and runout.
The sliding fork is another important part of the drive shaft. It can bend over rough terrain, allowing the U-joint to keep spinning in tougher conditions. If the slip yoke fails, you will not be able to drive and will clang. You need to replace it as soon as possible to avoid any dangerous driving conditions. So if you notice any dings, be sure to check the yoke.
If you detect any vibrations, the drivetrain may need adjustment. It’s a simple process. First, rotate the driveshaft until you find the correct alignment between the tube yoke and the sliding yoke of the rear differential. If there is no noticeable vibration, you can wait for a while to resolve the problem. Keep in mind that it may be convenient to postpone repairs temporarily, but it may cause bigger problems later.
air-compressor

end yoke

If your driveshaft requires a new end yoke, CZPT has several drivetrain options. Our automotive end yoke inventory includes keyed and non-keyed options. If you need tapered or straight holes, we can also make them for you.
A U-bolt is an industrial fastener that has U-shaped threads on its legs. They are often used to join 2 heads back to back. These are convenient options to help keep drivetrain components in place when driving over rough terrain, and are generally compatible with a variety of models. U-bolts require a specially machined yoke to accept them, so be sure to order the correct size.
The sliding fork helps transfer power from the transfer case to the driveshaft. They slide in and out of the transfer case, allowing the u-joint to rotate. Sliding yokes or “slips” can be purchased separately. Whether you need a new 1 or just a few components to upgrade your driveshaft, 4 CZPT Parts will have the parts you need to repair your vehicle.
The end yoke is a necessary part of the drive shaft. It connects the drive train and the mating flange. They are also used in auxiliary power equipment. CZPT’s drivetrains are stocked with a variety of flanged yokes for OEM applications and custom builds. You can also find flanged yokes for constant velocity joints in our extensive inventory. If you don’t want to modify your existing drivetrain, we can even make a custom yoke for you.

China best Rear Axle Wheel Hub & Bearing Assembly for Audi A4 Vkba3606 8e0598611   near me manufacturer China best Rear Axle Wheel Hub & Bearing Assembly for Audi A4 Vkba3606 8e0598611   near me manufacturer

China Hot selling Auto Rear Axle Wheel Hub Bearing OEM 42200-Stx-A02 for Honda with Best Sales

Product Description

Auto Rear Axle Wheel Hub Bearing OEM
42200-STX-A02 For Honda
 

Product Description

OEM 42200-STX-A02
Brand FENGMING
Condition Brand New
Stock Availability Yes
Minimum Order QTY 2PC
OEM Order Acceptability  Yes
Small order Lead Time 3-7 days
Large Order Lead Time 15-30 days
Quality Warranty 12 Months
Package As netural or as customer’s request, FENG MING PACKING
Payment Methods Paypal, Western Union, Bank T/T, L/C
Shipment Methods DHL, UPS, TNT, FedEx, Aramex, EMS, Air Cargo, Sea Cargo

 

Company Profile

 

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
splineshaft

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
splineshaft

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
splineshaft

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China Hot selling Auto Rear Axle Wheel Hub Bearing OEM 42200-Stx-A02 for Honda   with Best SalesChina Hot selling Auto Rear Axle Wheel Hub Bearing OEM 42200-Stx-A02 for Honda   with Best Sales