Tag Archives: automobile hub bearing

China Best Sales New OEM Front Side Automobile Axle Bearing Wheel Bearing Wheel Hub with Best Sales

Product Description

                        OEM Front Side Automobile Axle Bearing Wheel Bearing Wheel Hub
 

Product Description

 

Material

Steel

Surface Treatment

E-coating

Model Number

9.00*22.5

Bolt holes

8/10

Bolt Hole Diameter

24/26/32

Bolt Hole Type

1*45/SR22

P.C.D

275/285/285.75/335

C.B.D

214/220/221/222/281

Offset

175/170

Disc Thickness

12/14/16/18

Rim Thickness

6/7/8

Welding feature

Flash Butt Welding/Submerged Arc Welding

Packaging Details

Pallet/Carton/Non Woven Fabrics/Bulk

Color

Silver/Blue/Golden/Black or as your request

MOQ

100 pieces

Delivery Time

Around 15-20 Days

Type

Tube Steel Wheel Rim

WHEEL SIZE

BOLT HOLES

PCD(MM)

HOLES NO

HOLE DIA

HOLE TYPE

 

22.5X9.00

10

26

1*45

335

22.5X9.00

10

26

1*45

285.75

22.5X9.00

10

32

SR22

285.75

22.5X9.00

8

32

SR22

285

22.5X9.00

10

26/24

1*45

275

(MM)

OFFSET

THICKNESS

EQUIPPED TIRE

DISC

RIM

281

175

12/14/16/18

6/7/8

 

 

 

12R22.5

220

175

12/14/16/18

6/7/8

222

175

12/14/16/18

6/7/8

221

175

12/14/16/18

6/7/8

221/214

175

12/14/16/18

6/7/8

 

Specifications

1.Supply to USA, Europe, and Australia
2.Material:40Cr/ 4130 Heat Treated Chromoly Steel/ 4340 Heat Treated Chromoly Steel/ 300M
3.Surface: Sand Blast/ Silver Zinc/ Yellow Zinc/ Black Zinc/ Chrome Finish/ Electrophoresis
We could manufacture all kinds of wheel hub assembly according to OEM No., Your Samples, or Drawings.

Bearings are usually installed to carry equipment on the shaft. The hardness and adhesion of the material itself buffer the impact of the bearing on the shaft head and reduce the appearance of the shaft head and hub wear.

Surface Treatment:

High quality stainless steel metal with high gloss and corrosion resistance. We guarantee the density of the liquid metal and the strength of the solidified metal.
 

Material Selection:

Ensure the strength of metal solidification, thick hub, hub uniform, not easy to break, more durable.
 

1) Don’t do the best, just do better
2) Quality:Using high-quality raw materials and innovative technology can make your product quality better and more Stable.And enhance market competitiveness
3) Quick Q&A that might save some of your concerns. Sincerity: We are committed to providing high quality products and services.There is no fake and no cheat Experience: We always focus on Technology and Quality,So we got rich professional experiences and had an excellent technical team. Services: We can offer fast pruducting and fast delivery and customized products,With a good after-sales services Win-Win: With a large number of satisfied customers in China.We are looking forward to meet you from all over the world Mission: To deliver high quality and reasonable products to customers all around the world.

 

Q1:Are you a manufacturer or a trading company?

We are both a factory and a trading company. This type can meet our customers’ requirements for flexible export. We are manufacturers, and our quality and price will be competitive in the market. In addition, we also have professional sales teams and engineers to provide you with the greatest support.

Q2:Why should we buy from your company instead of other suppliers?

We maintain good quality and competitive prices to ensure that our customers benefit. All our products are 100% tested before shipment. We take the initiative to provide you with better, more efficient, and more reliable solutions

Q3:Do you provide OEM/ODM services?

We have an experienced R&D team, advanced equipment, and a quality control laboratory factory. Of course, we can provide OEM/ODM services.

Q4:How to customize (OEM/ODM)?

If you have new product drawings or samples, please send them to us, and we can customize the hardware according to your requirements. We will also provide our professional suggestions on products to make the design more realized and maximize performance.

Quality First, Price Best, Service Foremost!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: as Specification
Warranty: as Specification
Certification: DOT
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle hub

What are the common symptoms of a failing axle hub, and how can they be identified?

Identifying the common symptoms of a failing axle hub is crucial for timely diagnosis and repair. Here’s a detailed explanation of the common symptoms and how they can be identified:

1. Wheel Vibrations:

One of the common symptoms of a failing axle hub is noticeable wheel vibrations. As the hub becomes worn or damaged, it may cause the wheel to wobble or shake while driving. These vibrations can be felt through the steering wheel, floorboard, or seat. To identify this symptom, pay attention to any unusual vibrations that occur, especially at higher speeds.

2. Grinding or Growling Noises:

A failing axle hub can produce grinding or growling noises. This can be an indication of worn-out or damaged wheel bearings within the hub. The noise may vary in intensity, and it is often more pronounced during turns or when the vehicle is in motion. To identify this symptom, listen for any unusual grinding or growling sounds coming from the wheels while driving.

3. Wheel Play or Looseness:

A failing axle hub can result in wheel play or looseness. When the hub is damaged or worn, it may not provide a secure mounting point for the wheel. As a result, the wheel may have excessive play or feel loose when you attempt to wiggle it by hand. To identify this symptom, jack up the vehicle and try to move the wheel in different directions to check for any abnormal movement.

4. Uneven Tire Wear:

A failing axle hub can contribute to uneven tire wear. If the hub is damaged, it can affect the alignment and cause the tire to wear unevenly. Look for signs of abnormal tire wear, such as excessive wear on one side of the tire or feathering patterns. Uneven tire wear may also be accompanied by other symptoms, such as vibrations or pulling to one side while driving.

5. ABS Warning Light:

In some cases, a failing axle hub can trigger the ABS (Anti-lock Braking System) warning light on the vehicle’s dashboard. This can occur if there is a problem with the wheel speed sensor, which is often integrated into the hub assembly. The ABS warning light indicates a fault in the braking system and should be diagnosed using a diagnostic tool by a qualified technician.

6. Visual Inspection:

A visual inspection can also help identify signs of a failing axle hub. Look for any visible damage or wear on the hub, such as cracks, corrosion, or bent flanges. Additionally, check for any leaking grease around the hub or signs of excessive heat, which can indicate bearing failure.

7. Professional Diagnosis:

If you suspect a failing axle hub but are unsure, it is recommended to have the vehicle inspected by a qualified mechanic. They can perform a comprehensive examination of the wheel assembly, including the hub, bearings, and associated components. They may use specialized tools and equipment to measure wheel play, check for bearing wear, and assess the overall condition of the hub.

In summary, common symptoms of a failing axle hub include wheel vibrations, grinding or growling noises, wheel play or looseness, uneven tire wear, ABS warning light activation, and visible damage. It is essential to pay attention to these symptoms and seek professional diagnosis and repair to prevent further damage and ensure the safe operation of the vehicle.

axle hub

How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?

Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:

  • Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
  • Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
  • Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
  • Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
  • Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.

It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.

In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.

axle hub

Can axle hubs impact the alignment of a vehicle, and how is this corrected?

Axle hubs can indeed impact the alignment of a vehicle, and any alignment issues arising from the axle hubs should be corrected to ensure optimal vehicle handling, tire wear, and overall safety. Here’s a detailed explanation:

An axle hub is a critical component that connects the wheel assembly to the vehicle’s suspension. It houses the wheel bearings and provides the mounting point for the wheel. If an axle hub is damaged, worn, or improperly installed, it can lead to misalignment issues. Here are a few ways axle hubs can impact vehicle alignment:

  • Bearing Wear: Axle hubs contain wheel bearings that allow the wheels to rotate smoothly. If the bearings are worn or damaged, they can introduce play or uneven movement in the wheel assembly. This can result in misalignment, causing the vehicle to pull to one side or affect the camber, toe, or caster angles.
  • Improper Installation: If an axle hub is not installed correctly, it can introduce misalignment issues. For example, if the hub is not tightened to the specified torque or if the mounting surfaces are not properly cleaned, it can result in uneven pressure distribution and misalignment.
  • Impact Damage: Axle hubs can get damaged due to accidents, hitting potholes, or other impacts. Any deformation or misalignment of the axle hub can affect the alignment of the wheel assembly.

To correct alignment issues caused by axle hubs, the following steps are typically taken:

  1. Inspection: A thorough inspection of the axle hubs is conducted to identify any damage, wear, or improper installation. This may involve removing the wheels and visually examining the axle hubs for signs of damage or wear.
  2. Replacement: If the axle hubs are found to be damaged, worn, or improperly installed, they need to be replaced. Replacement axle hubs should be sourced from reputable manufacturers or OEM (Original Equipment Manufacturer) suppliers to ensure proper fit and alignment.
  3. Wheel Alignment: After replacing the axle hubs, a wheel alignment procedure is necessary to correct any misalignment caused by the previous issues. This typically involves adjusting the camber, toe, and caster angles to the manufacturer’s specifications using specialized alignment equipment.
  4. Additional Repairs: In some cases, axle hub-related alignment issues may have caused additional damage to suspension components or steering linkage. These components should be inspected and repaired as needed to ensure proper alignment and functionality.

It’s important to note that correcting alignment issues caused by axle hubs generally requires the expertise of a qualified mechanic or alignment specialist. They have the necessary knowledge, experience, and equipment to accurately diagnose and rectify alignment problems associated with axle hubs.

In summary, axle hubs can impact the alignment of a vehicle. Issues such as bearing wear, improper installation, or impact damage can introduce misalignment. To correct these alignment issues, a thorough inspection of the axle hubs is conducted, followed by replacement if necessary. Afterward, a wheel alignment procedure is performed to adjust the angles to the manufacturer’s specifications. Professional assistance from a qualified mechanic or alignment specialist is recommended to ensure accurate diagnosis and proper correction of axle hub-related alignment issues.

China Best Sales New OEM Front Side Automobile Axle Bearing Wheel Bearing Wheel Hub   with Best Sales China Best Sales New OEM Front Side Automobile Axle Bearing Wheel Bearing Wheel Hub   with Best Sales
editor by CX 2024-04-23

China manufacturer Automobile Wheel Hub Unit Vkba6649 713610900 Wheel Hub Bearing Hub Unit Assembly Fit for Audi Front Axle and Rear Axle a 3-axle vehicle

Product Description

Product Description

Product Name

Wheel hub assembly VKBA6649

Brand

PPB/Neutral Or As Your Request

Features

Low friction, Long service life, Enhanced operational reliability, Consistency of roller profiles and sizes, Rigid bearing application, Running-in period with reduced temperature peaks, Separable and interchangeable With low and smoothly coefficient of friction

Quality standard

ISO9.2

VKBA523 482A/472 VKBA 5038 35BWD16 VKM14103

 

 

Company Profile

ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and other parts.

Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.

 

Customer’s satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.

Our Advantages

More than 20 years of manufacturing and exporting experience
OEM manufacturing available
Full range, large stock
Quickly feedback
One year warranty
One-stop service
On-time delivery

Packaging & Shipping

Packaging Details 1 piece in a single box
2 boxes in a carton
30 cartons in a pallet
Nearest Port ZheJiang or HangZhou
Lead Time For stock parts: 1-5 days.
If no stock parts:
<20 pcs: 15-30 days
≥20 pcs: to be negotiated.

OUR SERVICES
– We have more than 20 years’ experience in auto bearings fields.
– Excellent quality control is 1 of our main principles
– We offer OEM service, accept customer labels, and develop the product with your drawings or samples
– Any questions will get a response within 24 hours.

FAQ

1. What’s the minimum order quantity?

We don’t have the minimum order quantity. We can also provide free samples, but you need to pay the freight.

     
 2. Do you provide ODM&OEM order service?

Yes, we provide ODM&OEM services to customers around the world, and we can customize different brands and different sizes of packaging boxes according to customers’ requirements.

     
3. After-sales service and warranty time

We guarantee that our products will be free from defects in materials and workmanship within 12 months from the date of delivery. The warranty is void due to improper use, incorrect installation, and physical damage.
 

4. How to place an order?

Send us an email of the models, brand, quantity, consignee information, model of transportation, and payment
Confirm payment and arrange the production.
 

5. What are your packing conditions?

We use standardized export packaging and environmental protection packaging materials. If you have a legally registered patent, we will package the goods in your brand box after receiving your authorization

6. What are your payment terms?

T/T is 30% of the payment in advance and 70% balance before delivery. Before you pay the balance, we will show you photos or videos of the products and packaging.
 

7. How long is your delivery time?

The delivery time of the sample order is 3-5 days, and that of a batch order is 5-45 days. The exact delivery time depends on the item and the quantity you ordered.
 

8. Do you test all products before delivery?
Yes, according to ISO standards, we have professional Q/C personnel, precision testing instruments, and an internal inspection system. We control the quality of every process from material receiving to packaging to ensure that you receive high-quality products

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year
Warranty: One Year
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P0
Certification: ISO9001, TS16949
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

How do I diagnose and address noise issues associated with a malfunctioning axle hub?

Diagnosing and addressing noise issues associated with a malfunctioning axle hub requires a systematic approach to identify the root cause and take appropriate corrective measures. Here’s a detailed explanation of the diagnostic process and steps to address the problem:

1. Identify the Noise:

The first step is to identify the specific noise associated with the malfunctioning axle hub. Pay attention to the type and characteristics of the noise, such as grinding, growling, clicking, or humming. Note when the noise occurs, whether it’s during acceleration, deceleration, or while turning. This initial identification can help narrow down the possible causes.

2. Inspect the Axle Hub:

Visually inspect the axle hub for any signs of damage or wear. Look for cracks, corrosion, or loose components. Check if there is any leaking grease around the hub, as it can indicate bearing failure. A thorough inspection can provide valuable clues about the condition of the axle hub.

3. Perform a Road Test:

Take the vehicle for a road test to observe the noise and its behavior under different driving conditions. Pay attention to any changes in the noise when making turns, accelerating, or braking. Note whether the noise gets louder or changes in pitch. This can help in further narrowing down the issue.

4. Jack up the Vehicle:

If the noise persists and is suspected to be coming from the axle hub, jack up the vehicle and secure it with jack stands. Rotate the wheel associated with the suspected axle hub and listen for any abnormal noise or roughness. Try to wiggle the wheel by hand to check for excessive play or looseness, which can indicate a problem with the hub assembly.

5. Check Wheel Bearings:

A common cause of noise issues in axle hubs is worn-out or damaged wheel bearings. To check the wheel bearings, grasp the tire at the 12 o’clock and 6 o’clock positions and attempt to rock it back and forth. Excessive movement or play indicates a potential problem with the wheel bearings. Additionally, spin the wheel and listen for any grinding or rumbling noises, which can also be indicative of bearing issues.

6. Addressing the Issue:

If a malfunctioning axle hub is identified as the source of the noise, the following steps can be taken to address the problem:

  • Replacement: If the axle hub is severely damaged or the bearings are worn out, replacing the entire hub assembly is often recommended. This ensures proper fitment, bearing integrity, and overall reliability. Consult the vehicle’s service manual or seek professional assistance for the correct replacement procedure.
  • Bearing Replacement: In some cases, it may be possible to replace the wheel bearings within the axle hub if they are the sole source of the noise issue. This requires specialized tools and expertise, so it is advisable to consult a qualified mechanic for bearing replacement.
  • Additional Repairs: Depending on the severity of the issue, it may be necessary to address other related components. This can include replacing damaged CV joints, inspecting and replacing worn brake components, or addressing any other issues identified during the diagnostic process.

7. Post-Repair Verification:

After addressing the noise issue by repairing or replacing the malfunctioning axle hub, take the vehicle for a test drive to verify that the noise is eliminated. Ensure that the vehicle operates smoothly, and there are no abnormal vibrations or noises coming from the axle hub during different driving conditions.

It’s important to note that diagnosing and addressing noise issues associated with a malfunctioning axle hub can be complex, and it may require the expertise of a qualified mechanic. If you’re uncomfortable performing the diagnostics and repairs yourself, it’s advisable to seek professional assistance to ensure an accurate diagnosis and proper resolution of the issue.

In summary, diagnosing and addressing noise issues associated with a malfunctioning axle hub involves identifying the noise, inspecting the hub, performing a road test, checking wheel bearings, and taking appropriate repair or replacement measures. Following a systematic approach and seeking professional help when needed can help resolve the noise issue and ensure the safe operation of the vehicle.

axle hub

How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?

Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:

  • Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
  • Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
  • Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
  • Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
  • Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.

It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.

In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.

axle hub

Can axle hubs be upgraded for better performance, and if so, how?

Axle hubs can be upgraded to improve performance in certain cases. Upgrading axle hubs can involve various modifications and enhancements. Here’s a detailed explanation:

Before considering an upgrade, it’s important to evaluate the specific needs and goals for the vehicle. Upgrades to axle hubs can target areas such as durability, load capacity, handling, and overall performance. Here are some potential ways to upgrade axle hubs:

  • High-Performance Bearings: Upgrading to high-performance wheel bearings can improve the durability and load capacity of the axle hub. High-quality bearings made from stronger materials or featuring advanced designs can provide enhanced reliability and performance under demanding conditions.
  • Performance Seals: Upgraded seals can provide better protection against contaminants and improve the overall sealing performance of the axle hub. Enhanced seals can help prevent dirt, water, and other debris from entering the hub assembly, increasing its lifespan and reducing the risk of damage.
  • Reinforced Hub Components: In some cases, upgrading to axle hubs with reinforced components, such as stronger hub bodies or larger studs, can enhance their load-carrying capacity and overall strength. This can be particularly beneficial for vehicles that operate under heavy loads or encounter rugged terrain.
  • Improved Cooling: Upgrading the cooling system of the axle hub can help dissipate heat more effectively, reducing the risk of overheating and prolonging the lifespan of the hub components. This can involve the addition of cooling fins, better ventilation, or even the use of aftermarket cooling solutions.
  • Performance Coatings: Applying specialized coatings to the axle hub surfaces can provide better protection against corrosion and wear. Coatings such as zinc plating or ceramic coatings can enhance the durability and performance of the hub components, particularly in harsh environments.
  • Aftermarket Axle Hub Assemblies: In some cases, aftermarket axle hub assemblies can offer performance-oriented upgrades over stock components. These assemblies may incorporate design improvements, advanced materials, or specialized features to enhance performance, reliability, and overall functionality.

It’s important to note that axle hub upgrades may require careful consideration of compatibility with other vehicle components, such as brakes, wheels, and suspension. Additionally, some upgrades may affect the vehicle’s warranty or require professional installation. It is recommended to consult with knowledgeable professionals, such as mechanics or specialists, who can provide guidance on suitable upgrades and ensure proper installation.

When considering axle hub upgrades, it’s also essential to assess the overall condition of the vehicle and address any underlying issues. Regular maintenance, such as proper lubrication, inspection, and timely replacement of worn components, is crucial for maximizing the performance and lifespan of the axle hubs.

In summary, axle hubs can be upgraded to improve performance in certain cases. Upgrades may involve high-performance bearings, improved seals, reinforced hub components, enhanced cooling, performance coatings, or aftermarket axle hub assemblies. It’s important to assess the specific needs of the vehicle, consult with professionals, and consider compatibility with other components when pursuing axle hub upgrades.

China manufacturer Automobile Wheel Hub Unit Vkba6649 713610900 Wheel Hub Bearing Hub Unit Assembly Fit for Audi Front Axle and Rear Axle   a 3-axle vehicleChina manufacturer Automobile Wheel Hub Unit Vkba6649 713610900 Wheel Hub Bearing Hub Unit Assembly Fit for Audi Front Axle and Rear Axle   a 3-axle vehicle
editor by CX 2024-04-04

China wholesaler Hot Sale Top Quality Automobile Bearing Dac35720034 Wheel Bearing Hub with Good quality

Product Description

Basic Info.
Model NO.:  Dac35720034  Dac357234A  35bwd01  91051-692-018
 
Type:Wheel Hub Bearing
Material:Chrome Steel
 
ABS:Without ABS
Certification:ISO9001
 
28*61*42*42mm:High Quality
Export Markets:South America, Eastern Europe, Africa, Mid East, Western Europe
Additional Info.
Trademark:beilin
 
Packing:Color Box
Standard:high quality
 
Origin:China
Production Capacity:500000 PCS /Year
Product Description
Wheel bearing, that is Double row angular contact ball bearings, auto bearing, 
DAC series), auto parts, are used in automotive axles at the hub used for load 
Bearing and rotating parts to provide accurate guidance, both axial load and 
Radial load, a car load and rotational important part. 

Specifications: 

1. Material: Chrome steel 

2. Quality certification: ISO9001: 2000 system 

3. Clearance: C0, C2, C3, C4, C5 

4. Vibration Level: V4, V3, V2, V1 

5. Lubracation: Grease, Oil 

6. Cage/Retainer material: Pressed Steel, Nylon 

7. Precision Rate: ABEC-1, ABEC-3, ABEC-5, ABEC-7 

8. Fields used in: Series of cars, such as CZPT CZPT Renault, Citroen BMW, Nissan, Opel and ect. 

9. Packing: Single color box as requirements 

10. Service: Xihu (West Lake) Dis. brand, OEM available 

Details: 

We will complete the following process to make sure our products can meet your 
Demands 

1. Assembly 

2. Windage test 

3. Cleaning 

4. Rotary test 

5. Greasing and gland 

6. Noise inspection 

7. Appearance inspection 

8. Rust prevention 

9. Product packaging 

We pursue: Quality first, reputation forever, “the quality, first-class service, quick delivery ways, the most competitive prices and dedication to both old and new customers with quality bearings. 

Welcome to visit our factory and send us the quatation! 
Part of the items:

Item No.  Dimensions  Applications 
d D B C  
DAC25525716 25 52 20.6 20.6 Fiat, Seat
DAC25520037 25 52 37 37 Renault, Peugeot, Citroen
DAC25550043 25 55 43 43 Renault, Peugeot, Citroen
DAC25560032 25 56 32 32 Citroen
DAC27600050 27 60 50 50 Nissan
DAC28610042 28 61 42 42 Toyota
DAC30600037 30 60 37 37 Fiat, Lada, Lancia, Seat, Volvo
DAC306500264 30 65 26.4 26.4 FOR FIAT REGATTA
DAC30650571 30 65 21 21 Fiat, Seat, Polski
DAC34620037 34 62 37 37 Audi, Volkswagen, Chrysler
DAC34640037 34 64 37 37 Lada, Opel, Volkswagen, Bedford
DAC34660037 34 66 37 37 Opel, Vauxhall, Accord
DAC35640037 35 64 37 37 Daihastu
DAC35650035 35 65 35 35 Renault
DAC35660032 35 66 32 32 Citroen
DAC35660037 35 66 37 37 Volkswagen
DAC35680037 35 68 37 37 Fiat, Lancia, Seat, Volvo, Zastava
DAC35725718 35 72.02 28 28 Citroen, Peugeot, Renault, Simca, Talbot
DAC3572571 35 72.04 33 33 Fiat, Lancia
DAC36680033 36 68 33 33 Suzuki
DAC3672571 36 72.05 34 34 Chrysler, Honda
DAC37720037 37 72 37 37 Fiat, Ford, Lancia, Renault, Chrysler
DAC3772571 37 72.04 37 37 Alfa Romeo, Fiat, Lancia, Chrysler, Renault
DAC37740045 37 74 45 45 BMW, Opel, Ford
DAC38720040 38 72 40 40 LLCS HONDA CIVIC
DAC38725716/33 37.99 72.02 36 33 Honda, Rover
DAC38745716/33 37.99 74.02 36 33 Toyota
DAC39680637 39 68.06 37 37 Volkswagen, Ford, Audi, Chrysler
DAC39720037 39 72 37 37 BMW, Opel, Ford, Bedford, Vauxhall
DAC39720637 39 72.06 37 37 BMW, Opel, Ford, Bedford, Vauxhall
DAC39740039 39 74 39 39 Opel, Vauxhall

Worm Gear Motors

Worm gear motors are often preferred for quieter operation because of the smooth sliding motion of the worm shaft. Unlike gear motors with teeth, which may click as the worm turns, worm gear motors can be installed in a quiet area. In this article, we will talk about the CZPT whirling process and the various types of worms available. We’ll also discuss the benefits of worm gear motors and worm wheel.
worm shaft

worm gear

In the case of a worm gear, the axial pitch of the ring pinion of the corresponding revolving worm is equal to the circular pitch of the mating revolving pinion of the worm gear. A worm with 1 start is known as a worm with a lead. This leads to a smaller worm wheel. Worms can work in tight spaces because of their small profile.
Generally, a worm gear has high efficiency, but there are a few disadvantages. Worm gears are not recommended for high-heat applications because of their high level of rubbing. A full-fluid lubricant film and the low wear level of the gear reduce friction and wear. Worm gears also have a lower wear rate than a standard gear. The worm shaft and worm gear is also more efficient than a standard gear.
The worm gear shaft is cradled within a self-aligning bearing block that is attached to the gearbox casing. The eccentric housing has radial bearings on both ends, enabling it to engage with the worm gear wheel. The drive is transferred to the worm gear shaft through bevel gears 13A, 1 fixed at the ends of the worm gear shaft and the other in the center of the cross-shaft.

worm wheel

In a worm gearbox, the pinion or worm gear is centered between a geared cylinder and a worm shaft. The worm gear shaft is supported at either end by a radial thrust bearing. A gearbox’s cross-shaft is fixed to a suitable drive means and pivotally attached to the worm wheel. The input drive is transferred to the worm gear shaft 10 through bevel gears 13A, 1 of which is fixed to the end of the worm gear shaft and the other at the centre of the cross-shaft.
Worms and worm wheels are available in several materials. The worm wheel is made of bronze alloy, aluminum, or steel. Aluminum bronze worm wheels are a good choice for high-speed applications. Cast iron worm wheels are cheap and suitable for light loads. MC nylon worm wheels are highly wear-resistant and machinable. Aluminum bronze worm wheels are available and are good for applications with severe wear conditions.
When designing a worm wheel, it is vital to determine the correct lubricant for the worm shaft and a corresponding worm wheel. A suitable lubricant should have a kinematic viscosity of 300 mm2/s and be used for worm wheel sleeve bearings. The worm wheel and worm shaft should be properly lubricated to ensure their longevity.

Multi-start worms

A multi-start worm gear screw jack combines the benefits of multiple starts with linear output speeds. The multi-start worm shaft reduces the effects of single start worms and large ratio gears. Both types of worm gears have a reversible worm that can be reversed or stopped by hand, depending on the application. The worm gear’s self-locking ability depends on the lead angle, pressure angle, and friction coefficient.
A single-start worm has a single thread running the length of its shaft. The worm advances 1 tooth per revolution. A multi-start worm has multiple threads in each of its threads. The gear reduction on a multi-start worm is equal to the number of teeth on the gear minus the number of starts on the worm shaft. In general, a multi-start worm has 2 or 3 threads.
Worm gears can be quieter than other types of gears because the worm shaft glides rather than clicking. This makes them an excellent choice for applications where noise is a concern. Worm gears can be made of softer material, making them more noise-tolerant. In addition, they can withstand shock loads. Compared to gears with toothed teeth, worm gears have a lower noise and vibration rate.
worm shaft

CZPT whirling process

The CZPT whirling process for worm shafts raises the bar for precision gear machining in small to medium production volumes. The CZPT whirling process reduces thread rolling, increases worm quality, and offers reduced cycle times. The CZPT LWN-90 whirling machine features a steel bed, programmable force tailstock, and five-axis interpolation for increased accuracy and quality.
Its 4,000-rpm, 5-kW whirling spindle produces worms and various types of screws. Its outer diameters are up to 2.5 inches, while its length is up to 20 inches. Its dry-cutting process uses a vortex tube to deliver chilled compressed air to the cutting point. Oil is also added to the mixture. The worm shafts produced are free of undercuts, reducing the amount of machining required.
Induction hardening is a process that takes advantage of the whirling process. The induction hardening process utilizes alternating current (AC) to cause eddy currents in metallic objects. The higher the frequency, the higher the surface temperature. The electrical frequency is monitored through sensors to prevent overheating. Induction heating is programmable so that only certain parts of the worm shaft will harden.

Common tangent at an arbitrary point on both surfaces of the worm wheel

A worm gear consists of 2 helical segments with a helix angle equal to 90 degrees. This shape allows the worm to rotate with more than 1 tooth per rotation. A worm’s helix angle is usually close to 90 degrees and the body length is fairly long in the axial direction. A worm gear with a lead angle g has similar properties as a screw gear with a helix angle of 90 degrees.
The axial cross section of a worm gear is not conventionally trapezoidal. Instead, the linear part of the oblique side is replaced by cycloid curves. These curves have a common tangent near the pitch line. The worm wheel is then formed by gear cutting, resulting in a gear with 2 meshing surfaces. This worm gear can rotate at high speeds and still operate quietly.
A worm wheel with a cycloid pitch is a more efficient worm gear. It reduces friction between the worm and the gear, resulting in greater durability, improved operating efficiency, and reduced noise. This pitch line also helps the worm wheel engage more evenly and smoothly. Moreover, it prevents interference with their appearance. It also makes worm wheel and gear engagement smoother.
worm shaft

Calculation of worm shaft deflection

There are several methods for calculating worm shaft deflection, and each method has its own set of disadvantages. These commonly used methods provide good approximations but are inadequate for determining the actual worm shaft deflection. For example, these methods do not account for the geometric modifications to the worm, such as its helical winding of teeth. Furthermore, they overestimate the stiffening effect of the gearing. Hence, efficient thin worm shaft designs require other approaches.
Fortunately, several methods exist to determine the maximum worm shaft deflection. These methods use the finite element method, and include boundary conditions and parameter calculations. Here, we look at a couple of methods. The first method, DIN 3996, calculates the maximum worm shaft deflection based on the test results, while the second one, AGMA 6022, uses the root diameter of the worm as the equivalent bending diameter.
The second method focuses on the basic parameters of worm gearing. We’ll take a closer look at each. We’ll examine worm gearing teeth and the geometric factors that influence them. Commonly, the range of worm gearing teeth is 1 to four, but it can be as large as twelve. Choosing the teeth should depend on optimization requirements, including efficiency and weight. For example, if a worm gearing needs to be smaller than the previous model, then a small number of teeth will suffice.

China wholesaler Hot Sale Top Quality Automobile Bearing Dac35720034 Wheel Bearing Hub   with Good qualityChina wholesaler Hot Sale Top Quality Automobile Bearing Dac35720034 Wheel Bearing Hub   with Good quality

China Custom Promotional Top Quality Automobile Bearing Dac35720433 Wheel Bearing Hub with Hot selling

Product Description

Basic Info.
Model NO.: DAC3572571/DAC39730037/DAC30600337
 
Type:Wheel Hub Bearing
Material:Chrome Steel
 
ABS:Without ABS
Certification:ISO9001
 
High Quality:Hub Bearing
Accuracy Level:P0, P6, P5, P4, P2
 
Vibration:V1, V2, V3, V4
Earing Clearance:C2, Co, C3, C4, C5
 
Bearing Material:Chrome Steel
Export Markets:South America, Eastern Europe, Africa, Mid East, Western Europe
Additional Info.
Trademark:IKC
 
Packing:Color Box
Standard:high quality
 
Origin:China
Production Capacity:500000 PCS /Year
Product Description
HangZhou CZPT Bearing Co, LTD. Supplys all kinds of bearings which Products included: Deep groove ball bearings, tapered roller bearings, auto hub bearings etc. 
Double row angular contact ball bearings, auto bearing, wheel bearing 
(DAC series), auto parts, are used in automotive axles at the hub used for load bearing and rotating parts to provide accurate 
Guidance, both axial load and radial load, a car load and rotational important part. 

Automotive Wheel Hub Bearing Dac Series 
Automotive Wheel Hub Bearing ISO9001 

Body parts for Motor, Machinery, Electric Tools, Sports Apparatus, office 
Equipment, Scooter Aluminum windows, shower blocks, hanging round, closet 
Wheel, toys, etc 

Fan, car, truck, tractors and automatic machine, Textile machine, Pump, Agriculturalmachinery, Machine tool, window, sliding door, other furniture and some toys 
We pursue: Quality first, reputation forever, “the quality, first-class service, quick delivery ways, the most competitive prices and dedication to both old and new customers with quality bearings. 

Welcome to send us the quatation. 

Part of the items:

Item No.  Dimensions  Applications 
d D B C  
DAC25525716 25 52 20.6 20.6 Fiat, Seat
DAC25520037 25 52 37 37 Renault, Peugeot, Citroen
DAC25550043 25 55 43 43 Renault, Peugeot, Citroen
DAC25560032 25 56 32 32 Citroen
DAC27600050 27 60 50 50 Nissan
DAC28610042 28 61 42 42 Toyota
DAC30600037 30 60 37 37 Fiat, Lada, Lancia, Seat, Volvo
DAC306500264 30 65 26.4 26.4 FOR FIAT REGATTA
DAC30650571 30 65 21 21 Fiat, Seat, Polski
DAC34620037 34 62 37 37 Audi, Volkswagen, Chrysler
DAC34640037 34 64 37 37 Lada, Opel, Volkswagen, Bedford
DAC34660037 34 66 37 37 Opel, Vauxhall, Accord
DAC35640037 35 64 37 37 Daihastu
DAC35650035 35 65 35 35 Renault
DAC35660032 35 66 32 32 Citroen
DAC35660037 35 66 37 37 Volkswagen
DAC35680037 35 68 37 37 Fiat, Lancia, Seat, Volvo, Zastava
DAC35725718 35 72.02 28 28 Citroen, Peugeot, Renault, Simca, Talbot
DAC3572571 35 72.04 33 33 Fiat, Lancia
DAC36680033 36 68 33 33 Suzuki
DAC3672571 36 72.05 34 34 Chrysler, Honda
DAC37720037 37 72 37 37 Fiat, Ford, Lancia, Renault, Chrysler
DAC3772571 37 72.04 37 37 Alfa Romeo, Fiat, Lancia, Chrysler, Renault
DAC37740045 37 74 45 45 BMW, Opel, Ford
DAC38720040 38 72 40 40 LLCS HONDA CIVIC
DAC38725716/33 37.99 72.02 36 33 Honda, Rover
DAC38745716/33 37.99 74.02 36 33 Toyota
DAC39680637 39 68.06 37 37 Volkswagen, Ford, Audi, Chrysler
DAC39720037 39 72 37 37 BMW, Opel, Ford, Bedford, Vauxhall
DAC39720637 39 72.06 37 37 BMW, Opel, Ford, Bedford, Vauxhall
DAC39740039 39 74 39 39 Opel, Vauxhall

Screw Shaft Types

If you’re looking for a screw shaft, but aren’t sure which type to buy, you’re in luck. In this article, we’ll talk about the different types, including Threaded shank, Round head, and Machined. Once you’ve read it, you’ll know which type to buy. Then, you can decide whether you want a ball screw nut or a threaded shank.

Machined screw shafts

Besides the standard stainless steel shaft, manufacturers also provide a variety of other materials, such as titanium, bronze, and brass. In addition to stainless steel, manufacturers also provide a variety of top-coating options, including zinc, brass, and chromium. Aluminum screws are not particularly durable and are easily affected by weather. Most screw shafts feature self-locking mechanisms. They are especially useful in C-clamps, vises, and screw-top container lids.
For applications where accuracy is vital, a ball screw shaft needs to be annealed. A heat treatment can be performed on the ball screw shaft to ensure that both ends are heated evenly. In this process, the shaft will be more durable, while maintaining its high-precision properties. These screw shafts are a key component in computer-controlled motion-control systems, wire bonding, and other industries that require high-precision and high-quality performance.
Depending on the material used, screw shafts can be made of stainless steel or titanium. High-precision CNC machines and lathes are typically used to manufacture screw shafts. Various shapes and sizes are available, each with a specific application. Whether you need a small or large screw, you can find 1 to fit your needs. And since each size requires a different material, your choice of material is important as well.
In general, the materials used for machining screw shafts are steel, stainless steel, titanium, brass, bronze, and aluminum. Metals that resist corrosion are also commonly used. Other materials for screw shafts are Teflon, nylon, and nylon. You can also find threaded screw shafts in materials such as porcelain, glass, and ceramic. If you want to use your screws in a unique material, consider purchasing a customized one.
screwshaft

Ball screw nuts

If you have a screw shaft, the last thing you want to worry about is the ball nut slipping off. To prevent this, you can place a temporary stop in the shaft’s grooves to ensure that the ball nut does not slide off. When you remove the stop, you can then install the ball screw nut. But, before you can install the ball screw nut, you have to make sure that you have a good grip on the shaft.
When selecting ball screw nuts, it’s important to consider how much preload you need to apply to avoid excessive backlash. Preloading eliminates this problem by making the ball nut compact. It also prevents backlash, which is lost motion caused by clearance between the ball and nut. Backlash disrupts repeatability and accuracy. This is where spacer preloading comes in. You can insert a spacer between the 2 ball nuts to transmit the force to the nut. However, you should keep in mind that this method reduces the load capacity of the ball screw.
The critical speed of a screw is the maximum rotating speed before it whips. This critical speed is influenced by several factors, including the diameter of the screw shaft, the number of support elements, and the material. By adjusting these factors, you can reduce the number of components used and the amount of time it takes to assemble the screw shaft. In addition, you can also reduce the number of components and avoid stacking tolerances. However, the critical speed of plastic nuts is limited due to sliding friction.
The ball screw nut has several characteristics that make it unique. Its most prominent feature is the presence of ball bearings. These balls help reduce friction between the screw nut and the shaft. Without ball bearings, the friction would be too high to function properly. Another important characteristic is the groove profile of the nut and ball. These 2 features ensure that the ball and the nut meet at 2 points. You’ll be amazed by the results of the work of these ball screw nuts.
screwshaft

Threaded shank

Wood screws are usually not fully threaded because the shank has an unthreaded portion at the top. This shoulder part forces the screw to compress 2 pieces of wood, which prevents the screw from overheating and compromising the materials strength. As the screw is threaded partially up, it is not as difficult to remove as a fully threaded screw. However, it is important to note that a wood screw will not hold as tightly as 1 with a fully threaded shank.
In addition to being universal, screw threads can be of different sizes. For example, a M8 screw has a thread pitch of 1.25 mm. To avoid confusion, screw thread pitches are commonly given with a multiplication sign. For example, M8x1 means that the screw is 8 mm in diameter but has a thread pitch of 1 mm per 360-degree rotation. Those who are not familiar with these dimensions may find it confusing.
The OD of the threaded portion of a bolt is generally smaller than the OD of the nut. If the shank is too deep for the nut to fit, the threads may bottom out. This is why it’s important to use a thread-cutting bit with a small thread diameter. You can use a micrometer or caliper to measure the thread diameter. This tool will also allow you to easily identify which screw size fits where and how well.
The metric system is the most widely used. Fasteners with DIN numbers are generally metric in size. This makes them very useful for industrial settings. You can find metric-sized screws anywhere, as long as you buy them from a reputable manufacturer. These fasteners also come with a dog point, which is used for safety wire. If the screw needs to be replaced, the shank can be drilled with a hole for a safety wire or for a dog-point.

Round head

A round head screw is the most common type used for machine screws. Other common types include truss head, flat head, and hexed head. Each has a different profile and are used for different purposes. A round head screw is typically wider than a flat or a hexed head, and has a slightly rounded surface. These screws are useful for projects involving sheet metal or sheet-metal parts. Round heads are usually slightly wider than a hex head screw, and they may also be used as a substitute for washers in certain applications. However, truss heads are not necessary for every project.
A wood screw has a smooth shank that protrudes above the surface of the material it is attaching. A metal screw has a threaded shaft that is fully threaded from head to point, and a fully threaded shaft provides more bite. Two common head styles are round head and pan head. If the task requires the screw to be flush or countersunk, the round head will be the best choice.
Another type is the Reed & Prince screw drive. These are similar to Phillips screws but have a 75-degree V shape. They are commonly used in marine hardware and are also known as BNAE NFL22-070. This type is also used for steel plate hangers. In addition to round head and pan head screws, there are a variety of other screw types. You can even get a head with a slotted head if you know where to look.
Screw diameters are specified according to the ISO 261 or ISO 262 standards. An M8 screw has a diameter of 8.25 mm. The M8 screw has a pitch of 1.25 mm, which is equivalent to 1 mm per 360 degrees. There are several other standard screw sizes and thread diameters available. You can find them all by consulting the relevant standards. But remember, the metric system is the most popular.
screwshaft

Self-locking mechanism

A self-locking mechanism for a screw shaft is a device that secures the screw to its supporting member in a failure position. The locking mechanism provides a positive connection between the screw shaft and the control surface during normal operation, and locks the screw to its supporting member when the screw fails. Previous attempts to solve this problem have typically used secondary nuts with free play on the screw, which were intentionally designed to jam when loaded. However, such a device can be unreliable, which is why the present invention offers a more robust and reliable locking mechanism.
The self-locking function of a screw depends on several factors, including its pitch angle and the coefficient of friction of the threads. The angle of friction must be less than the tangent of the material pairing to prevent untightening of the screw. Screws with self-locking mechanisms have an efficiency e lower than 50%, which is less than half. Self-locking screws also have the benefit of being less efficient than a standard screw.
Unlike a normal screw, a self-locking screw can be turned in either direction. The nut 22 rotates with the screw shaft, and the member 23 is translated in an axial direction. Regardless of the direction of the rotation of the screw, this axial translation will result in the opposite moment to that input moment. While screw self-locking mechanisms are typically less expensive, they are more reliable and durable.
Another important feature of self-locking screws is that they are not susceptible to independent loosening. The screw cannot rotate without a certain amount of torque. In addition, a self-locking screw shaft must have a small wedge with a smaller half-angle than the arctangent of the static friction. This means that the torque applied by the driver must be greater than the torque needed to overcome the friction.

China Custom Promotional Top Quality Automobile Bearing Dac35720433 Wheel Bearing Hub   with Hot sellingChina Custom Promotional Top Quality Automobile Bearing Dac35720433 Wheel Bearing Hub   with Hot selling