Tag Archives: sales bearing

China Best Sales New OEM Front Side Automobile Axle Bearing Wheel Bearing Wheel Hub with Best Sales

Product Description

                        OEM Front Side Automobile Axle Bearing Wheel Bearing Wheel Hub
 

Product Description

 

Material

Steel

Surface Treatment

E-coating

Model Number

9.00*22.5

Bolt holes

8/10

Bolt Hole Diameter

24/26/32

Bolt Hole Type

1*45/SR22

P.C.D

275/285/285.75/335

C.B.D

214/220/221/222/281

Offset

175/170

Disc Thickness

12/14/16/18

Rim Thickness

6/7/8

Welding feature

Flash Butt Welding/Submerged Arc Welding

Packaging Details

Pallet/Carton/Non Woven Fabrics/Bulk

Color

Silver/Blue/Golden/Black or as your request

MOQ

100 pieces

Delivery Time

Around 15-20 Days

Type

Tube Steel Wheel Rim

WHEEL SIZE

BOLT HOLES

PCD(MM)

HOLES NO

HOLE DIA

HOLE TYPE

 

22.5X9.00

10

26

1*45

335

22.5X9.00

10

26

1*45

285.75

22.5X9.00

10

32

SR22

285.75

22.5X9.00

8

32

SR22

285

22.5X9.00

10

26/24

1*45

275

(MM)

OFFSET

THICKNESS

EQUIPPED TIRE

DISC

RIM

281

175

12/14/16/18

6/7/8

 

 

 

12R22.5

220

175

12/14/16/18

6/7/8

222

175

12/14/16/18

6/7/8

221

175

12/14/16/18

6/7/8

221/214

175

12/14/16/18

6/7/8

 

Specifications

1.Supply to USA, Europe, and Australia
2.Material:40Cr/ 4130 Heat Treated Chromoly Steel/ 4340 Heat Treated Chromoly Steel/ 300M
3.Surface: Sand Blast/ Silver Zinc/ Yellow Zinc/ Black Zinc/ Chrome Finish/ Electrophoresis
We could manufacture all kinds of wheel hub assembly according to OEM No., Your Samples, or Drawings.

Bearings are usually installed to carry equipment on the shaft. The hardness and adhesion of the material itself buffer the impact of the bearing on the shaft head and reduce the appearance of the shaft head and hub wear.

Surface Treatment:

High quality stainless steel metal with high gloss and corrosion resistance. We guarantee the density of the liquid metal and the strength of the solidified metal.
 

Material Selection:

Ensure the strength of metal solidification, thick hub, hub uniform, not easy to break, more durable.
 

1) Don’t do the best, just do better
2) Quality:Using high-quality raw materials and innovative technology can make your product quality better and more Stable.And enhance market competitiveness
3) Quick Q&A that might save some of your concerns. Sincerity: We are committed to providing high quality products and services.There is no fake and no cheat Experience: We always focus on Technology and Quality,So we got rich professional experiences and had an excellent technical team. Services: We can offer fast pruducting and fast delivery and customized products,With a good after-sales services Win-Win: With a large number of satisfied customers in China.We are looking forward to meet you from all over the world Mission: To deliver high quality and reasonable products to customers all around the world.

 

Q1:Are you a manufacturer or a trading company?

We are both a factory and a trading company. This type can meet our customers’ requirements for flexible export. We are manufacturers, and our quality and price will be competitive in the market. In addition, we also have professional sales teams and engineers to provide you with the greatest support.

Q2:Why should we buy from your company instead of other suppliers?

We maintain good quality and competitive prices to ensure that our customers benefit. All our products are 100% tested before shipment. We take the initiative to provide you with better, more efficient, and more reliable solutions

Q3:Do you provide OEM/ODM services?

We have an experienced R&D team, advanced equipment, and a quality control laboratory factory. Of course, we can provide OEM/ODM services.

Q4:How to customize (OEM/ODM)?

If you have new product drawings or samples, please send them to us, and we can customize the hardware according to your requirements. We will also provide our professional suggestions on products to make the design more realized and maximize performance.

Quality First, Price Best, Service Foremost!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: as Specification
Warranty: as Specification
Certification: DOT
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle hub

What are the common symptoms of a failing axle hub, and how can they be identified?

Identifying the common symptoms of a failing axle hub is crucial for timely diagnosis and repair. Here’s a detailed explanation of the common symptoms and how they can be identified:

1. Wheel Vibrations:

One of the common symptoms of a failing axle hub is noticeable wheel vibrations. As the hub becomes worn or damaged, it may cause the wheel to wobble or shake while driving. These vibrations can be felt through the steering wheel, floorboard, or seat. To identify this symptom, pay attention to any unusual vibrations that occur, especially at higher speeds.

2. Grinding or Growling Noises:

A failing axle hub can produce grinding or growling noises. This can be an indication of worn-out or damaged wheel bearings within the hub. The noise may vary in intensity, and it is often more pronounced during turns or when the vehicle is in motion. To identify this symptom, listen for any unusual grinding or growling sounds coming from the wheels while driving.

3. Wheel Play or Looseness:

A failing axle hub can result in wheel play or looseness. When the hub is damaged or worn, it may not provide a secure mounting point for the wheel. As a result, the wheel may have excessive play or feel loose when you attempt to wiggle it by hand. To identify this symptom, jack up the vehicle and try to move the wheel in different directions to check for any abnormal movement.

4. Uneven Tire Wear:

A failing axle hub can contribute to uneven tire wear. If the hub is damaged, it can affect the alignment and cause the tire to wear unevenly. Look for signs of abnormal tire wear, such as excessive wear on one side of the tire or feathering patterns. Uneven tire wear may also be accompanied by other symptoms, such as vibrations or pulling to one side while driving.

5. ABS Warning Light:

In some cases, a failing axle hub can trigger the ABS (Anti-lock Braking System) warning light on the vehicle’s dashboard. This can occur if there is a problem with the wheel speed sensor, which is often integrated into the hub assembly. The ABS warning light indicates a fault in the braking system and should be diagnosed using a diagnostic tool by a qualified technician.

6. Visual Inspection:

A visual inspection can also help identify signs of a failing axle hub. Look for any visible damage or wear on the hub, such as cracks, corrosion, or bent flanges. Additionally, check for any leaking grease around the hub or signs of excessive heat, which can indicate bearing failure.

7. Professional Diagnosis:

If you suspect a failing axle hub but are unsure, it is recommended to have the vehicle inspected by a qualified mechanic. They can perform a comprehensive examination of the wheel assembly, including the hub, bearings, and associated components. They may use specialized tools and equipment to measure wheel play, check for bearing wear, and assess the overall condition of the hub.

In summary, common symptoms of a failing axle hub include wheel vibrations, grinding or growling noises, wheel play or looseness, uneven tire wear, ABS warning light activation, and visible damage. It is essential to pay attention to these symptoms and seek professional diagnosis and repair to prevent further damage and ensure the safe operation of the vehicle.

axle hub

How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?

Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:

  • Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
  • Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
  • Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
  • Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
  • Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.

It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.

In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.

axle hub

Can axle hubs impact the alignment of a vehicle, and how is this corrected?

Axle hubs can indeed impact the alignment of a vehicle, and any alignment issues arising from the axle hubs should be corrected to ensure optimal vehicle handling, tire wear, and overall safety. Here’s a detailed explanation:

An axle hub is a critical component that connects the wheel assembly to the vehicle’s suspension. It houses the wheel bearings and provides the mounting point for the wheel. If an axle hub is damaged, worn, or improperly installed, it can lead to misalignment issues. Here are a few ways axle hubs can impact vehicle alignment:

  • Bearing Wear: Axle hubs contain wheel bearings that allow the wheels to rotate smoothly. If the bearings are worn or damaged, they can introduce play or uneven movement in the wheel assembly. This can result in misalignment, causing the vehicle to pull to one side or affect the camber, toe, or caster angles.
  • Improper Installation: If an axle hub is not installed correctly, it can introduce misalignment issues. For example, if the hub is not tightened to the specified torque or if the mounting surfaces are not properly cleaned, it can result in uneven pressure distribution and misalignment.
  • Impact Damage: Axle hubs can get damaged due to accidents, hitting potholes, or other impacts. Any deformation or misalignment of the axle hub can affect the alignment of the wheel assembly.

To correct alignment issues caused by axle hubs, the following steps are typically taken:

  1. Inspection: A thorough inspection of the axle hubs is conducted to identify any damage, wear, or improper installation. This may involve removing the wheels and visually examining the axle hubs for signs of damage or wear.
  2. Replacement: If the axle hubs are found to be damaged, worn, or improperly installed, they need to be replaced. Replacement axle hubs should be sourced from reputable manufacturers or OEM (Original Equipment Manufacturer) suppliers to ensure proper fit and alignment.
  3. Wheel Alignment: After replacing the axle hubs, a wheel alignment procedure is necessary to correct any misalignment caused by the previous issues. This typically involves adjusting the camber, toe, and caster angles to the manufacturer’s specifications using specialized alignment equipment.
  4. Additional Repairs: In some cases, axle hub-related alignment issues may have caused additional damage to suspension components or steering linkage. These components should be inspected and repaired as needed to ensure proper alignment and functionality.

It’s important to note that correcting alignment issues caused by axle hubs generally requires the expertise of a qualified mechanic or alignment specialist. They have the necessary knowledge, experience, and equipment to accurately diagnose and rectify alignment problems associated with axle hubs.

In summary, axle hubs can impact the alignment of a vehicle. Issues such as bearing wear, improper installation, or impact damage can introduce misalignment. To correct these alignment issues, a thorough inspection of the axle hubs is conducted, followed by replacement if necessary. Afterward, a wheel alignment procedure is performed to adjust the angles to the manufacturer’s specifications. Professional assistance from a qualified mechanic or alignment specialist is recommended to ensure accurate diagnosis and proper correction of axle hub-related alignment issues.

China Best Sales New OEM Front Side Automobile Axle Bearing Wheel Bearing Wheel Hub   with Best Sales China Best Sales New OEM Front Side Automobile Axle Bearing Wheel Bearing Wheel Hub   with Best Sales
editor by CX 2024-04-23

China Best Sales Front Axle Wheel Hub Bearing Wheel Hub Assembly 731679120 OE 1763887 for CZPT Transit bad axle symptoms

Product Description

Basic information for :

Description Wheel bearing repair kit 731679120
Material Chrome steel Gcr15
Application Ford Transit, Tourneo Custom Bus
Brand SI, CZPT or customized
Size OD: 208mm
ID: 31mm
FLANGE: 5
WEIGHT: 5kg
WHEEL: 5-Hole
Packing Neutral, SI, PPB brand packing or customized
OEM/ODM service Yes
Manufacture place ZHangZhoug, China
MOQ 50 PCS
OEM replacement Yes
Inspection 100%
Warranty 1 year or 30,000-50,000 KMS
Certificate ISO9001:2015
Payment T/T, PayPal

Detailed pictures:

OE No.:
For FORD: 1763887
For FORD: 1769170
For FORD: 2168129
For FORD: BK212C300AA
For FORD: BK212C300AB
For FORD: BK212C300AC

Other Ref. No.:
A.B.S. : 201860
AUTEX : 85717
Automotive Bearings : ABK2174
BENDIX : 052144B
F-AG : 
FIRST LINE : FBK1469
FREMAX : FWB-1661
KAWE : 8530 16150
MOOG : FD-WB-12819
MOTAQUIP : LVBK1751
MOTAQUIP : LVBW1751
NK : 752547
OPTIMAL : 301905
TRISCAN : 8530 16150
AUTOKIT : 01.98286
AUTOKIT : ASB2881
AUTOKIT : RKB2881
REPKIT : RKB2881

Application:
FORD TOURNEO CUSTOM Bus 2.0 TDCi 2015-
FORD TOURNEO CUSTOM Bus 2.2 TDCi 2012-
FORD TRANSIT Box 2.2 TDCi 2013-
FORD TRANSIT Box 2.2 TDCi 4×4 2013-

Front Wheel Bearing Hub Assembly Replacement, Wheel Bearing & Hub Assembly, Hub Bearing Assembly, front bearing hub replacement, hub and bearing replacement, wheel hub bearings, front wheel bearing hub assembly, front wheel bearing hub replacement, hub bearing assembly front, wheel hub assembly, bearing assembly, Front Wheel Bearing and Hub Assembly, Front Wheel Drive Hub and Bearing Assembly

Packing and Delivery:

Work shop:

Exhibitions:

FAQ:
Q1.What is your shipping logistic?
Re: DHL, TNT, FedEx express, by air/sea/train.

Q2:What’s the MOQ?
Re: For the wheel hub assembly. The MOQ is always 50 sets. If ordering together with other models, small quantities can be organized. But need more time due to the production schedule.

Q3. What are your goods of packing?
Re: Generally, our goods will be packed in Neutral white or brown boxes for the hub bearing unit. Our brand packing SI & CZPT are offered. If you have any other packing requests, we shall also handle them.

Q4. What is your sample policy?
Re: We can supply the sample if we have ready parts in stock.

Q5. Do you have any certificates?
Re: Yes, we have the certificate of ISO9001:2015.

Q6:Any warranty of your products.
Re: Sure, We are offering a guarantee for 12 months or 40,000-50,000 km for the aftermarket.
 

Q7: How can I make an inquiry?

Re: You can contact us by email, telephone, WhatsApp, , etc.

 

Q8: How long can reply inquiry?

Re: Within 24 hours.

 

Q9: What’s the delivery time?

Re: Ready stock 10-15 days, production for 30 to 45 days.

 

Q10: How do you maintain our good business relationship?

Re: 1. Keep stable, reliable quality, competitive price to ensure our customer’s benefit;

2. Optimal lead time.

3. Keep customers updated about the new goods.

4. Make customers satisfaction as our main goal.

 

Q11: Can we visit the company & factory?

Re: Yes, welcome for your visit & business discussion.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: Yes
Type: Wheel Hub Bearing
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

axle hub

Can you recommend reliable brands for purchasing replacement axle hubs?

When it comes to purchasing replacement axle hubs, there are several reliable brands known for their quality and durability. Here are some recommended brands:

  • Timken: Timken is a well-known brand that specializes in manufacturing high-quality bearings and hub assemblies. They have a reputation for producing reliable and long-lasting products. Timken axle hubs are widely used in the automotive industry and are trusted by both professionals and DIY enthusiasts.
  • Moog: Moog is another reputable brand that offers a wide range of suspension and steering components, including axle hubs. Moog axle hubs are known for their precision engineering, excellent build quality, and reliable performance. They are designed to meet or exceed OEM (Original Equipment Manufacturer) specifications and are a popular choice among car owners.
  • ACDelco: ACDelco is a trusted brand that provides a comprehensive range of automotive replacement parts. Their axle hubs are designed to deliver reliable performance and durability. ACDelco axle hubs are often recommended for their compatibility with various vehicle makes and models, making them a reliable choice for replacement.
  • SKF: SKF is a well-established brand with a strong reputation in the automotive industry. They are known for their high-quality bearings and hub assemblies, including axle hubs. SKF axle hubs are engineered to provide excellent performance and longevity. They are often regarded as a premium option for those seeking reliable replacement parts.
  • NTN: NTN is a trusted manufacturer of bearings and hub assemblies. They offer a range of axle hubs that are designed to meet stringent quality standards. NTN axle hubs are known for their durability and precise fitment, making them a reliable choice for replacement in various vehicles.

It’s important to note that the availability of specific brands may vary depending on your location and the make and model of your vehicle. Additionally, it’s always a good idea to consult with a trusted mechanic or do thorough research to ensure the compatibility of the axle hubs with your vehicle before making a purchase.

In summary, some reliable brands for purchasing replacement axle hubs include Timken, Moog, ACDelco, SKF, and NTN. These brands have a solid reputation for producing high-quality and durable axle hubs, making them trusted choices for maintaining and repairing your vehicle’s axle system.

axle hub

Can a worn or damaged wheel bearing impact the performance of an axle hub?

Yes, a worn or damaged wheel bearing can significantly impact the performance of an axle hub. The wheel bearing plays a crucial role in supporting the weight of the vehicle and allowing the wheels to rotate smoothly. Here’s a detailed explanation of how a worn or damaged wheel bearing can affect the performance of an axle hub:

  • Wheel rotation: The axle hub, along with the wheel bearing, enables the smooth rotation of the wheel. When the wheel bearing is worn or damaged, it can cause irregular or uneven rotation of the wheel. This can result in vibrations, noise, and an overall rough ride quality.
  • Excessive play: A worn wheel bearing may develop excessive play or looseness. This can cause the wheel to wobble or have noticeable movement when jacked up or when driving. Excessive play in the wheel bearing can affect the vehicle’s stability, handling, and control, making it more difficult to steer accurately.
  • Noise: Worn or damaged wheel bearings often produce noticeable noise. The noise can vary from a low humming or rumbling sound to a high-pitched whining or grinding noise. The noise may become more pronounced when turning or when the vehicle is under load. Ignoring the noise and continuing to drive with a faulty wheel bearing can lead to further damage and potential safety hazards.
  • Heat buildup: A damaged wheel bearing may generate excessive heat due to increased friction and inadequate lubrication. The heat buildup can cause the bearing to expand, leading to further damage and potential failure. Overheated wheel bearings can contribute to premature wear of other components within the axle hub assembly, such as the axle shaft or hub assembly itself.
  • Uneven tire wear: A worn or damaged wheel bearing can result in uneven tire wear. As the wheel doesn’t rotate properly or experiences excessive play, it can cause the tire to wear unevenly. This can lead to premature tire wear on specific areas of the tread, affecting the tire’s performance, lifespan, and overall safety.
  • Reduced fuel efficiency: When a wheel bearing is damaged or worn, it can create additional resistance and drag on the wheel. This increased rolling resistance can have a negative impact on fuel efficiency, causing the vehicle to consume more fuel to maintain speed and overcome the additional resistance. Thus, a faulty wheel bearing can lead to decreased fuel efficiency and increased operating costs.

It’s important to address any signs of a worn or damaged wheel bearing promptly. If you suspect a problem with the wheel bearing or experience any of the symptoms mentioned above, it is recommended to have the vehicle inspected by a qualified mechanic or automotive technician. They can assess the condition of the wheel bearing and perform the necessary repairs or replacement to restore the proper performance of the axle hub and ensure safe operation of the vehicle.

In summary, a worn or damaged wheel bearing can have a significant impact on the performance of an axle hub. It can affect wheel rotation, cause excessive play, produce noise, lead to heat buildup, result in uneven tire wear, and reduce fuel efficiency. Prompt inspection and necessary repairs or replacement of a faulty wheel bearing are essential to maintain the optimal performance and safety of the axle hub.

axle hub

Are there any recalls or common issues associated with specific axle hub models?

Recalls and common issues can occur with specific axle hub models due to manufacturing defects, design flaws, or other factors. Here’s a detailed explanation:

It’s important to note that specific recalls and common issues can vary depending on the make, model, and year of the vehicle, as well as the specific axle hub manufacturer. Manufacturers and regulatory bodies such as the National Highway Traffic Safety Administration (NHTSA) monitor and address safety concerns related to axle hubs through recalls and investigations.

Recalls are typically initiated by the vehicle manufacturer or the axle hub manufacturer in response to identified safety defects or non-compliance with safety standards. Recalls aim to address the issues and rectify any potential safety risks associated with the axle hub models. They may involve inspections, repairs, or replacements of the affected components.

To determine if there are any recalls or common issues associated with specific axle hub models, it is recommended to check the following sources:

  1. Manufacturer’s Website: Visit the official website of the vehicle manufacturer or the axle hub manufacturer. They often provide information on recalls, technical service bulletins (TSBs), and common issues related to their products. Look for any relevant information specific to the axle hub models in question.
  2. NHTSA Website: The NHTSA maintains a comprehensive database of recalls and investigations related to vehicle components, including axle hubs. Their website allows users to search for recalls and investigations by specific make, model, and component. You can use their search tool to check if there are any recalls or investigations associated with the axle hub models of interest.
  3. Owner Forums and Online Communities: Online forums and communities dedicated to specific vehicle makes and models can be a valuable source of information. Owners often share their experiences, including common issues they have encountered with axle hub models. It’s important to consider multiple sources and exercise caution when relying on anecdotal information.
  4. Service Centers and Mechanics: Local service centers and mechanics who specialize in the specific vehicle make or have experience with the axle hub models in question may be aware of any recalls or common issues. They can provide insights based on their firsthand knowledge and experience.

By consulting these sources, you can gather information about any recalls or common issues associated with specific axle hub models. If any recalls or safety concerns are identified, it is recommended to contact the vehicle manufacturer or a certified dealership to inquire about the necessary actions, such as inspections or repairs, to address the issues.

In summary, recalls and common issues can occur with specific axle hub models. Checking the manufacturer’s website, the NHTSA website, owner forums, and consulting with service centers and mechanics can provide valuable information regarding any recalls or common issues associated with the axle hub models of interest. It’s important to stay informed and take appropriate actions to address any identified safety concerns.

China Best Sales Front Axle Wheel Hub Bearing Wheel Hub Assembly 731679120 OE 1763887 for CZPT Transit   bad axle symptomsChina Best Sales Front Axle Wheel Hub Bearing Wheel Hub Assembly 731679120 OE 1763887 for CZPT Transit   bad axle symptoms
editor by CX 2024-04-19

China Best Sales China Trailer Parts Classical Design Truck Trailer Parts Axle for Sell axle bearing

Product Description

Product Specification

Axle Type           L4 Wheer Fixing           Bearing
Max L2   L3   GM Center Studs      L1  Rimis  Axle
Capacity Track Brake Size Center Axle Tube Distance D1 D2 Total Recommended Weight
(T) (mm) (mm) Distance of (mm) of Brake P.C.D. Hole Length to use (kg)
      Spring Seat   Chamber (mm) Diameter (mm)    
      (mm)   (mm)   (mm)      
CK12FB03G1DE 12 1840 ∈420×180 ≥940 150x150x12 440 10-M22x1.5 335 281 2172 7.5V-20 380 (Ouer)33213(lnner)33118
CK13FB03G2DE 13 1840 ∈420×200 ≥940 150x150x12 375 10-M22x1.5 335 281 2170 7.5V-20 381
CK14FB03G2FG 14 1860 ∈420×200 ≥950 150x150x14 380 10-M22x1.5 335 281 2222 8.00V-20 412 (Outer)33215 dnneri32219
CK16FB0GG2HI  16 1860 ∈420×200 ≥950 150x150x16 380 10-M22x1.5 335 281 2293 8.50V-20 439 (Outer)32314(lnner)32222
CK18FBC3GHI 18 1860 ∈420×220 ≥950 150x150x18 380 10-M22x1.5 335 281 2293 8.50V-20 454  (Outer)32314(lnner)32222

Product Display

Related Products

Packaging and Transportation

 

Customer Photo

Our Certificate

Company Profile

FAQ

 

FAQ:

1. Q:What’s your best price for this product?

A: We will quote you best price according to your quantity, so when you making an inquiry, please let us know the quantity you want.The more quantity the better price.

 

2. Q:How about the quality of this product?

A: Our products are certified to ISO9001, TS16949 international quality standards. We compay have very strict Quality Control Systems.

 

3. Q:What material of the product can you supply?

A: Steel 

 

4. Q:What’s your MOQ? 

A: 10pcs for each model. We hope you can buy more to save more money.

 

5. Q:What’s the delivery time?

A: For products that are in stock, we can ship it within 7 days after receiving your payment. For custom order, quantity within 24 tons, production time is 12-20 days after confirmed every details.

 

6. Q:What’s your packing?

A:Our usual packing for this product is pallet, we can also supply you packing according to your requirements.

 

7. Q:Can we custom our own logo or label on this product?

A: Yes, you can. we support logo print & stamping & label print, print will be free if the logo is not very complex.
 

8. Q:What about the warranty?

A: We are very confident in our products, and we pack them very well to make sure the goods in well protection.

 

To avoid any subsequent trouble regarding quality issue, we suggest that you check the springs once you receive them. If there is any transport damaged or quality issue, don’t forget take the detail pictrues and contact us as soon as possible,we will properly handle it, make sure your loss to reduce to the smallest .

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: After Sales Service
Condition: New
Application: Trailer
Certification: CE, ISO
Material: Steel
Type: Front Axles
Customization:
Available

|

Customized Request

axle

Can you provide insights into the maintenance of axle bearings for smooth operation?

Maintaining axle bearings is essential for ensuring smooth operation, longevity, and optimal performance of a vehicle’s axle system. Here are some insights into the maintenance of axle bearings:

1. Regular Inspection:

Perform regular visual inspections of the axle bearings to check for any signs of wear, damage, or leaks. Look for indications such as excessive play, unusual noises, vibration, or leakage of grease. Inspections should be carried out as per the manufacturer’s recommended intervals or during routine maintenance checks.

2. Lubrication:

Adequate lubrication is crucial for the smooth operation of axle bearings. Follow the manufacturer’s guidelines for the type of lubricant to use and the recommended intervals for greasing. Over-greasing or under-greasing can lead to bearing damage or failure. Ensure that the proper amount of grease is applied to the bearings, and use a high-quality grease that is compatible with the axle bearing specifications.

3. Seal Inspection and Replacement:

Check the condition of the axle bearing seals regularly. The seals help to keep contaminants out and retain the lubricating grease within the bearing. If the seals are damaged, worn, or show signs of leakage, they should be replaced promptly to prevent dirt, water, or debris from entering the bearing assembly and causing damage.

4. Proper Installation:

During axle bearing replacement or installation, it is crucial to follow proper procedures to ensure correct seating and alignment. Improper installation can lead to premature bearing failure and other issues. Refer to the manufacturer’s instructions or consult a professional mechanic to ensure proper installation techniques are followed.

5. Load Capacity and Alignment:

Ensure that the axle bearings are properly sized and rated to handle the load capacity of the vehicle and the specific application. Overloading the bearings can lead to excessive wear and premature failure. Additionally, proper wheel alignment is important to prevent uneven bearing wear. Regularly check and adjust the wheel alignment if necessary.

6. Environmental Considerations:

Take into account the operating conditions and environment in which the vehicle is used. Extreme temperatures, exposure to water, dirt, or corrosive substances can affect the performance of axle bearings. In such cases, additional preventive measures may be necessary, such as more frequent inspections, cleaning, and lubrication.

7. Professional Maintenance:

If you are unsure about performing maintenance on axle bearings yourself or if you encounter complex issues, it is recommended to seek assistance from a qualified mechanic or technician who has experience with axle systems. They can provide expert advice, perform necessary repairs or replacements, and ensure proper maintenance of the axle bearings.

By following these maintenance insights, you can help ensure the smooth operation, longevity, and reliability of axle bearings, contributing to the overall performance and safety of the vehicle.

axle

Can you recommend axle manufacturers known for durability and reliability?

When it comes to choosing axle manufacturers known for durability and reliability, there are several reputable companies in the automotive industry. While individual experiences and preferences may vary, the following axle manufacturers have a track record of producing high-quality products:

1. Dana Holding Corporation: Dana is a well-known manufacturer of axles, drivetrain components, and sealing solutions. They supply axles to various automotive manufacturers and have a reputation for producing durable and reliable products. Dana axles are commonly found in trucks, SUVs, and off-road vehicles.

2. AAM (American Axle & Manufacturing): AAM is a leading manufacturer of driveline and drivetrain components, including axles. They supply axles to both OEMs (Original Equipment Manufacturers) and the aftermarket. AAM axles are known for their durability and are often found in trucks, SUVs, and performance vehicles.

3. GKN Automotive: GKN Automotive is a global supplier of driveline systems, including axles. They have a strong reputation for producing high-quality and reliable axles for a wide range of vehicles. GKN Automotive supplies axles to various automakers and is recognized for their technological advancements in the field.

4. Meritor: Meritor is a manufacturer of axles, brakes, and other drivetrain components for commercial vehicles. They are known for their robust and reliable axle products that cater to heavy-duty applications in the commercial trucking industry.

5. Spicer (Dana Spicer): Spicer, a division of Dana Holding Corporation, specializes in manufacturing drivetrain components, including axles. Spicer axles are widely used in off-road vehicles, trucks, and SUVs. They are known for their durability and ability to withstand demanding off-road conditions.

6. Timken: Timken is a trusted manufacturer of bearings, seals, and other mechanical power transmission products. While they are primarily known for their bearings, they also produce high-quality axle components used in various applications, including automotive axles.

It’s important to note that the availability of specific axle manufacturers may vary depending on the region and the specific vehicle make and model. Additionally, different vehicles may come equipped with axles from different manufacturers as per the OEM’s selection and sourcing decisions.

When considering axle replacements or upgrades, it is advisable to consult with automotive experts, including mechanics or dealerships familiar with your vehicle, to ensure compatibility and make informed decisions based on your specific needs and requirements.

axle

What are the signs of a worn or failing axle, and how can I troubleshoot axle issues?

Identifying the signs of a worn or failing axle is important for maintaining the safety and functionality of your vehicle. Here are some common signs to look out for and troubleshooting steps you can take to diagnose potential axle issues:

  1. Unusual Noises:
  2. If you hear clunking, clicking, or grinding noises coming from the area around the wheels, it could indicate a problem with the axle. These noises may occur during acceleration, deceleration, or when turning. Troubleshoot by listening carefully to the location and timing of the noises to help pinpoint the affected axle.

  3. Vibrations:
  4. A worn or failing axle can cause vibrations that can be felt through the steering wheel, floorboard, or seat. These vibrations may occur at certain speeds or during specific driving conditions. If you experience unusual vibrations, it’s important to investigate the cause, as it could be related to axle problems.

  5. Uneven Tire Wear:
  6. Inspect your tires for uneven wear patterns. Excessive wear on the inner or outer edges of the tires can be an indication of axle issues. Misaligned or damaged axles can cause the tires to tilt, leading to uneven tire wear. Regularly check your tires for signs of wear and take note of any abnormalities.

  7. Difficulty Steering:
  8. A worn or damaged axle can affect steering performance. If you experience difficulty in steering, such as stiffness, looseness, or a feeling of the vehicle pulling to one side, it may be due to axle problems. Pay attention to any changes in steering responsiveness and address them promptly.

  9. Visible Damage or Leaks:
  10. Inspect the axles visually for any signs of damage or leaks. Look for cracks, bends, or visible fluid leaks around the axle boots or seals. Damaged or leaking axles can lead to lubrication loss and accelerated wear. If you notice any visible issues, it’s important to have them inspected and repaired by a qualified mechanic.

  11. Professional Inspection:
  12. If you suspect axle issues but are unsure about the exact cause, it’s advisable to seek a professional inspection. A qualified mechanic can perform a thorough examination of the axles, suspension components, and related systems. They have the expertise and tools to diagnose axle problems accurately and recommend the appropriate repairs.

It’s important to note that troubleshooting axle issues can sometimes be challenging, as symptoms may overlap with other mechanical problems. If you’re uncertain about diagnosing or repairing axle issues on your own, it’s recommended to consult a professional mechanic. They can provide a proper diagnosis, ensure the correct repairs are performed, and help maintain the safety and performance of your vehicle.

China Best Sales China Trailer Parts Classical Design Truck Trailer Parts Axle for Sell   axle bearingChina Best Sales China Trailer Parts Classical Design Truck Trailer Parts Axle for Sell   axle bearing
editor by CX 2024-02-20

China factory CZPT Brand Hot Sales Automotive Bearing Front Axle Wheel Hub for CZPT Explorer 515050 Wheel Assembly Car Spare Part axle bearing

Product Description

Company Profile

 

Company introduction:

This is from GUANXIAN HAGUAN BEARING CO.,LTD.,located in China.WHB is our brand. We specialize in manufacturing double-row spherical roller bearing,pillow block bearing,thrust ball bearing and so on . We could supply bearing for you with competitive price or best price. Our products are sold well to Russia, Brazil, Mexico, Poland and Tunisia ect. If you are interested in our products, please send the enquiry to us as soon as possible. If you have any questions about the bearing can consult me.
Hope to establish a good business relationship with you. Looking forward to your early reply.
Thanks and best regards.

Certifications

 

ISO Certificate:

CE Certificate:

Packaging & Shipping

Detailed Photos

 

Packing:

A. plastic box+outer carton+pallets
B. plastic bag+ single box+carton+pallet
C. plastic bag+ single box+middle box+carton+pallet
D. Of course we will also be based on your needs

FAQ

 

FAQ:

1. What’s the minimum order quantity of your company?

our minimum order is one.

2. Can you accept OEM and customize it?

Yes, we can customize it for you according to the samples or drawings.

3. Can you provide samples for free?

  Yes, we can provide samples free of charge, but we need our customers to bear the freight.

4.Is your company a factory or a trading company?

we have our own factories. We export bearings all over the world.

5. When is the warranty period of your bearings?

within 3 months, the customer needs to provide photos and return the bearing.

6.Can you tell me your company’s payment terms are acceptable?

T / T, D / P, L / C, Western Union remittance,Paypal,Money Gram….

7.Can you tell me the delivery time of your goods?

 7-15 days, mainly depending on the quantity of your order.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Contact Angle: 60°
Aligning: Non-Aligning Bearing
Separated: Separated
Rows Number: Single
Material: Bearing Steel
ISO: 9001
Samples:
US$ 0.5/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

How do I diagnose and address noise issues associated with a malfunctioning axle hub?

Diagnosing and addressing noise issues associated with a malfunctioning axle hub requires a systematic approach to identify the root cause and take appropriate corrective measures. Here’s a detailed explanation of the diagnostic process and steps to address the problem:

1. Identify the Noise:

The first step is to identify the specific noise associated with the malfunctioning axle hub. Pay attention to the type and characteristics of the noise, such as grinding, growling, clicking, or humming. Note when the noise occurs, whether it’s during acceleration, deceleration, or while turning. This initial identification can help narrow down the possible causes.

2. Inspect the Axle Hub:

Visually inspect the axle hub for any signs of damage or wear. Look for cracks, corrosion, or loose components. Check if there is any leaking grease around the hub, as it can indicate bearing failure. A thorough inspection can provide valuable clues about the condition of the axle hub.

3. Perform a Road Test:

Take the vehicle for a road test to observe the noise and its behavior under different driving conditions. Pay attention to any changes in the noise when making turns, accelerating, or braking. Note whether the noise gets louder or changes in pitch. This can help in further narrowing down the issue.

4. Jack up the Vehicle:

If the noise persists and is suspected to be coming from the axle hub, jack up the vehicle and secure it with jack stands. Rotate the wheel associated with the suspected axle hub and listen for any abnormal noise or roughness. Try to wiggle the wheel by hand to check for excessive play or looseness, which can indicate a problem with the hub assembly.

5. Check Wheel Bearings:

A common cause of noise issues in axle hubs is worn-out or damaged wheel bearings. To check the wheel bearings, grasp the tire at the 12 o’clock and 6 o’clock positions and attempt to rock it back and forth. Excessive movement or play indicates a potential problem with the wheel bearings. Additionally, spin the wheel and listen for any grinding or rumbling noises, which can also be indicative of bearing issues.

6. Addressing the Issue:

If a malfunctioning axle hub is identified as the source of the noise, the following steps can be taken to address the problem:

  • Replacement: If the axle hub is severely damaged or the bearings are worn out, replacing the entire hub assembly is often recommended. This ensures proper fitment, bearing integrity, and overall reliability. Consult the vehicle’s service manual or seek professional assistance for the correct replacement procedure.
  • Bearing Replacement: In some cases, it may be possible to replace the wheel bearings within the axle hub if they are the sole source of the noise issue. This requires specialized tools and expertise, so it is advisable to consult a qualified mechanic for bearing replacement.
  • Additional Repairs: Depending on the severity of the issue, it may be necessary to address other related components. This can include replacing damaged CV joints, inspecting and replacing worn brake components, or addressing any other issues identified during the diagnostic process.

7. Post-Repair Verification:

After addressing the noise issue by repairing or replacing the malfunctioning axle hub, take the vehicle for a test drive to verify that the noise is eliminated. Ensure that the vehicle operates smoothly, and there are no abnormal vibrations or noises coming from the axle hub during different driving conditions.

It’s important to note that diagnosing and addressing noise issues associated with a malfunctioning axle hub can be complex, and it may require the expertise of a qualified mechanic. If you’re uncomfortable performing the diagnostics and repairs yourself, it’s advisable to seek professional assistance to ensure an accurate diagnosis and proper resolution of the issue.

In summary, diagnosing and addressing noise issues associated with a malfunctioning axle hub involves identifying the noise, inspecting the hub, performing a road test, checking wheel bearings, and taking appropriate repair or replacement measures. Following a systematic approach and seeking professional help when needed can help resolve the noise issue and ensure the safe operation of the vehicle.

axle hub

Are there specific tools required for DIY axle hub replacement, and where can I find them?

When undertaking a DIY axle hub replacement, certain tools are needed to ensure a smooth and successful process. Here are some specific tools that are commonly required for DIY axle hub replacement and where you can find them:

  • Jack and jack stands: These tools are essential for raising the vehicle off the ground and providing a stable support system. You can find jacks and jack stands at automotive supply stores, hardware stores, and online retailers.
  • Lug wrench or socket set: A lug wrench or a socket set with the appropriate size socket is necessary to loosen and tighten the lug nuts on the wheel. These tools are commonly available at automotive supply stores, hardware stores, and online retailers.
  • Torque wrench: A torque wrench is required to tighten the lug nuts on the wheel and other fasteners to the manufacturer’s recommended torque specifications. Torque wrenches can be found at automotive supply stores, tool stores, and online retailers.
  • Pry bar: A pry bar is useful for gently separating the axle hub assembly from the mounting point, especially if it is tightly secured. Pry bars are available at automotive supply stores, hardware stores, and online retailers.
  • Hammer: A hammer can be used to tap or lightly strike the axle hub assembly or its components for removal or installation. Hammers are commonly available at hardware stores, tool stores, and online retailers.
  • Wheel bearing grease: High-quality wheel bearing grease is necessary for lubricating the axle hub assembly and ensuring smooth operation. Wheel bearing grease can be purchased at automotive supply stores, lubricant suppliers, and online retailers.
  • Additional tools: Depending on the specific vehicle and axle hub assembly, you may require additional tools such as a socket set, wrenches, pliers, or specific specialty tools. Consult the vehicle’s service manual or online resources for the specific tools needed for your vehicle model.

To find these tools, you can visit local automotive supply stores, hardware stores, or tool stores in your area. They typically carry a wide range of automotive tools and equipment. Alternatively, you can explore online retailers that specialize in automotive tools and equipment, where you can conveniently browse and purchase the tools you need.

It’s important to ensure that the tools you acquire are of good quality and suitable for the task at hand. Investing in quality tools can make the DIY axle hub replacement process more efficient and help achieve better results. Additionally, always follow the manufacturer’s instructions and safety guidelines when using tools and equipment.

In summary, specific tools are required for DIY axle hub replacement, such as a jack and jack stands, lug wrench or socket set, torque wrench, pry bar, hammer, and wheel bearing grease. These tools can be found at automotive supply stores, hardware stores, tool stores, and online retailers. Acquiring quality tools and following proper safety guidelines will contribute to a successful DIY axle hub replacement.

axle hub

How do changes in wheel offset affect the angles and performance of axle hubs?

Changes in wheel offset can have a significant impact on the angles and performance of axle hubs. Here’s a detailed explanation:

Wheel offset refers to the distance between the centerline of the wheel and the mounting surface. It determines how far the wheel and tire assembly will be positioned in relation to the axle hub. There are three types of wheel offsets: positive offset, zero offset, and negative offset.

Here’s how changes in wheel offset can affect the angles and performance of axle hubs:

  • Camber Angle: Camber angle refers to the inward or outward tilt of the wheel when viewed from the front of the vehicle. Changes in wheel offset can impact the camber angle. Increasing positive offset or reducing negative offset typically results in more positive camber, while increasing negative offset or reducing positive offset leads to more negative camber. Improper camber angle can cause uneven tire wear, reduced traction, and handling issues.
  • Track Width: Wheel offset affects the track width, which is the distance between the centerlines of the left and right wheels. Wider track width can improve stability and cornering performance. Increasing positive offset or reducing negative offset generally widens the track width, while increasing negative offset or reducing positive offset narrows it.
  • Steering Geometry: Changes in wheel offset also impact the steering geometry of the vehicle. Altering the offset can affect the scrub radius, which is the distance between the tire contact patch and the steering axis. Changes in scrub radius can influence steering effort, feedback, and stability. It’s important to maintain the appropriate scrub radius for optimal handling and performance.
  • Wheel Bearing Load: Wheel offset affects the load applied to the wheel bearings. Increasing positive offset or reducing negative offset generally increases the load on the inner wheel bearing, while increasing negative offset or reducing positive offset increases the load on the outer wheel bearing. Proper wheel bearing load is crucial for their longevity and performance.
  • Clearance and Interference: Changes in wheel offset can also impact the clearance between the wheel and suspension components or bodywork. Insufficient clearance due to excessive positive offset or inadequate clearance due to excessive negative offset can lead to rubbing, interference, or potential damage to the axle hub, suspension parts, or bodywork.

It’s important to note that any changes in wheel offset should be done within the manufacturer’s recommended specifications or in consultation with knowledgeable professionals. Deviating from the recommended wheel offset can lead to adverse effects on the axle hub angles and performance, as well as other aspects of the vehicle’s handling and safety.

When modifying wheel offset, it is crucial to consider the overall impact on the vehicle’s suspension geometry, clearance, and alignment. It may be necessary to make corresponding adjustments to maintain proper alignment angles, such as camber, toe, and caster, to ensure optimal tire wear, handling, and performance.

In summary, changes in wheel offset can have a significant impact on the angles and performance of axle hubs. They can affect camber angles, track width, steering geometry, wheel bearing load, and clearance. It is important to adhere to manufacturer’s specifications and consult with knowledgeable professionals when considering changes in wheel offset to ensure proper alignment, optimal performance, and safe operation of the vehicle.

China factory CZPT Brand Hot Sales Automotive Bearing Front Axle Wheel Hub for CZPT Explorer 515050 Wheel Assembly Car Spare Part   axle bearingChina factory CZPT Brand Hot Sales Automotive Bearing Front Axle Wheel Hub for CZPT Explorer 515050 Wheel Assembly Car Spare Part   axle bearing
editor by CX 2024-02-20

China Best Sales OEM BMW Parts Replacement 31206850158 713649510 R150.47 Front Axle Wheel Bearing and Hub Assemblies Kit axle barbell

Product Description

Quick view:

Name FRONT AXLE WHEEL BEARING KIT
Material steel GCr15, 65Mn, or 55
Application BMW ROLLS-ROYCE
Bolts 4 bolts
Weight 3.8kg
Brand SI, PPB, or customized
Packing According to the customer, Neutral, our brand packing or customized
OEM replacement Yes, design according to the BMW genuine parts
Manufacture place ZHangZhoug, China
MOQ 20 PCS
Warranty 1 year or 30,
BMW : 31206791
BMW :
BMW :

Ref.:
A.B.S. : 201487
FAG :
FEBI BILSTEIN : 36289
FIRST LINE : FBK1210
FIRST LINE : FBK1434
MOOG : BM-WB-12720
OPTIMAL : 501501
SKF : VKBA6669
SNR : R150.47

Application:
BMW 750I 4.8L V8 2009
BMW  5 (F10) 518 d N47 D20 C 2013-
BMW  5 (F10) 520 d B47 D20 A 2013-
BMW  5 (F10) 520 i N20 B20 A 2571-
BMW  5 (F10) 525 d N47 D20 D 2011-
ROLLS-ROYCE DAWN 6.6L V12 Turbocharged 2017-
ROLLS-ROYCE GHOST 6.6L V12 Turbocharged 2571-

How we are controlling our quality of the automotive bearing:
Material: Steel GCr15, 65Mn, or 55, the plastic raw material is made of German BASF raw material, seals are self-made and passed simulated fatigue life test before mass production.
Heat treatment: Using salt bath heat treatment, it has better hardenability, better metallographic structure, prevents cracking, and increasing the service life of the bearing.
Design: Designed according to OEM parts, installation and use can replace OEM parts. You can send us the OE No. and other bearings codes. We can check the real products you want.
Warranty period: One year or 30,000 kilometers will be offered for the aftermarket. Under the need of OEM quality, it can reach 2 years or 50000 km.
Inspection and testing: Strictly inspect before leaving the factory, related experiments before mass production to ensure that the design parameters are consistent.

FAQ:

Q: How about your delivery time?
A: If it’s ready stock, it can be sent out immediately. If It has been sold out, we need around 45-60 days to produce.

 

Q: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, it’s for free. But if the value is big, the customers need to pay for the sample and courier cost.

Q: How can I make an inquiry?
A: You can contact us by email, telephone, WhatsApp, , etc.

Q: How long can reply inquiry?
A: Within 24 hours.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: 12 Month
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P0
Certification: ISO9001, TS16949
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

What steps are involved in the proper removal and installation of an axle hub assembly?

Properly removing and installing an axle hub assembly requires a systematic approach and the use of appropriate tools. Here are the detailed steps involved in the process:

  1. Gather the necessary tools: Before starting the removal and installation process, gather the required tools and equipment. This may include a jack, jack stands, lug wrench, socket set, torque wrench, pry bar, hammer, and a suitable wheel bearing grease.
  2. Prepare the vehicle: Park the vehicle on a flat surface and engage the parking brake. If necessary, loosen the lug nuts on the wheel associated with the axle hub assembly, but do not remove them yet.
  3. Jack up the vehicle: Use a jack to lift the vehicle off the ground at a suitable jacking point. Place jack stands under the vehicle to provide additional support and ensure safety. Carefully lower the vehicle onto the jack stands.
  4. Remove the wheel: Completely remove the lug nuts and take off the wheel to access the axle hub assembly.
  5. Disconnect brake components: Depending on the specific vehicle, there may be brake components attached to the axle hub assembly. This can include brake calipers, brake pads, and brake rotors. Follow the appropriate procedure to disconnect these components, which may involve removing caliper bolts, brake pad retaining clips, or rotor retaining screws.
  6. Disconnect the axle: If the axle shaft is connected to the axle hub assembly, disconnect it by removing the retaining nut or bolts. This step may vary depending on the type of axle and vehicle.
  7. Remove the axle hub assembly: The axle hub assembly is typically secured to the steering knuckle or suspension component by bolts or studs. Use the appropriate tools to remove these fasteners and carefully detach the axle hub assembly from the vehicle. In some cases, the assembly may be tight and require the use of a pry bar or hammer to gently separate it from the mounting point.
  8. Clean and inspect: Once the axle hub assembly is removed, clean the mounting surface on the steering knuckle or suspension component. Inspect the mounting area for any damage or corrosion that may affect the installation of the new axle hub assembly. Also, inspect the axle shaft and surrounding components for any signs of damage or wear.
  9. Install the new axle hub assembly: Apply a thin layer of wheel bearing grease to the mounting surface of the steering knuckle or suspension component. Carefully align the new axle hub assembly with the mounting holes and slide it into place. Install the bolts or studs and tighten them according to the manufacturer’s specifications. If there are any retaining nuts or bolts for the axle shaft, reinstall them and torque them to the recommended values.
  10. Reconnect brake components: Reinstall any brake components that were disconnected, such as brake calipers, brake pads, and brake rotors. Make sure to follow the correct procedure and torque specifications for these components.
  11. Reinstall the wheel: Put the wheel back onto the vehicle and hand-tighten the lug nuts. Lower the vehicle from the jack stands using a jack, and then use a torque wrench to tighten the lug nuts to the manufacturer’s recommended torque specification.
  12. Test and verify: Once the axle hub assembly is installed and all components are properly reconnected, take the vehicle for a test drive. Pay attention to any unusual noises, vibrations, or handling issues. Verify that the axle hub assembly is functioning correctly and that there are no leaks or other problems.

It’s important to note that the specific steps and procedures may vary depending on the vehicle make and model. Always consult the vehicle’s service manual or seek professional assistance if you are unsure about any aspect of the removal and installation process.

In summary, the proper removal and installation of an axle hub assembly involve gathering the necessary tools, preparing the vehicle, jacking up the vehicle, removing the wheel, disconnecting brake components and the axle, removing the old axle hub assembly, cleaning and inspecting, installing the new assembly, reconnecting brake components, reinstalling the wheel, and finally testing and verifying the functionality of the axle hub assembly.

axle hub

How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?

Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:

  • Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
  • Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
  • Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
  • Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
  • Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.

It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.

In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.

axle hub

Can axle hubs be upgraded for better performance, and if so, how?

Axle hubs can be upgraded to improve performance in certain cases. Upgrading axle hubs can involve various modifications and enhancements. Here’s a detailed explanation:

Before considering an upgrade, it’s important to evaluate the specific needs and goals for the vehicle. Upgrades to axle hubs can target areas such as durability, load capacity, handling, and overall performance. Here are some potential ways to upgrade axle hubs:

  • High-Performance Bearings: Upgrading to high-performance wheel bearings can improve the durability and load capacity of the axle hub. High-quality bearings made from stronger materials or featuring advanced designs can provide enhanced reliability and performance under demanding conditions.
  • Performance Seals: Upgraded seals can provide better protection against contaminants and improve the overall sealing performance of the axle hub. Enhanced seals can help prevent dirt, water, and other debris from entering the hub assembly, increasing its lifespan and reducing the risk of damage.
  • Reinforced Hub Components: In some cases, upgrading to axle hubs with reinforced components, such as stronger hub bodies or larger studs, can enhance their load-carrying capacity and overall strength. This can be particularly beneficial for vehicles that operate under heavy loads or encounter rugged terrain.
  • Improved Cooling: Upgrading the cooling system of the axle hub can help dissipate heat more effectively, reducing the risk of overheating and prolonging the lifespan of the hub components. This can involve the addition of cooling fins, better ventilation, or even the use of aftermarket cooling solutions.
  • Performance Coatings: Applying specialized coatings to the axle hub surfaces can provide better protection against corrosion and wear. Coatings such as zinc plating or ceramic coatings can enhance the durability and performance of the hub components, particularly in harsh environments.
  • Aftermarket Axle Hub Assemblies: In some cases, aftermarket axle hub assemblies can offer performance-oriented upgrades over stock components. These assemblies may incorporate design improvements, advanced materials, or specialized features to enhance performance, reliability, and overall functionality.

It’s important to note that axle hub upgrades may require careful consideration of compatibility with other vehicle components, such as brakes, wheels, and suspension. Additionally, some upgrades may affect the vehicle’s warranty or require professional installation. It is recommended to consult with knowledgeable professionals, such as mechanics or specialists, who can provide guidance on suitable upgrades and ensure proper installation.

When considering axle hub upgrades, it’s also essential to assess the overall condition of the vehicle and address any underlying issues. Regular maintenance, such as proper lubrication, inspection, and timely replacement of worn components, is crucial for maximizing the performance and lifespan of the axle hubs.

In summary, axle hubs can be upgraded to improve performance in certain cases. Upgrades may involve high-performance bearings, improved seals, reinforced hub components, enhanced cooling, performance coatings, or aftermarket axle hub assemblies. It’s important to assess the specific needs of the vehicle, consult with professionals, and consider compatibility with other components when pursuing axle hub upgrades.

China Best Sales OEM BMW Parts Replacement 31206850158 713649510 R150.47 Front Axle Wheel Bearing and Hub Assemblies Kit   axle barbellChina Best Sales OEM BMW Parts Replacement 31206850158 713649510 R150.47 Front Axle Wheel Bearing and Hub Assemblies Kit   axle barbell
editor by CX 2024-02-12

China Best Sales Front Axle Wheel Hub Assembly Vkba3511 for Opel Astra Vauxhall Astra 13123486 1603209 90538940 9117620 Wheel Hub Bearing Unit axle cost

Product Description

Product Description

Wheel Bearing Kit VKBA 3511
Flange Ø 119,4 mm
Supplementary Article/Info 2: with integrated ABS sensor
Parts list
Bearing 1
Washer 1
Nut 1
Sealing/Protective Cap 1
Split Pin 1
Screw 3

 

Detailed Photos

Front Axle Wheel Hub Assembly Vkba3511 for Opel Astra Vauxhall Astra 13123486~8 9117620 Wheel Hub Bearing Unit

OEM NUMBER 

OPEL
13123486

9571940
9117620

VAUXHALL
13123486

9571940
9117620

REFERENCE NUMBER

2.2

VKBA523 482A/472 VKBA 5038 35BWD16 VKM14103

 

 

Company Profile

ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and other parts.

Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.

 

Customer satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.

 

Our Advantages

More than 20 years of manufacturing and exporting experience
OEM manufacturing available
Full range, large stock
Quickly feedback
One year warranty
One-stop service
On-time delivery

Packaging & Shipping

FAQ

1. What’s the minimum order quantity?

We don’t have the minimum order quantity. We can also provide free samples, but you need to pay the freight.

     
 2. Do you provide ODM&OEM order service?

Yes, we provide ODM&OEM services to customers around the world, and we can customize different brands and different sizes of packaging boxes according to customers’ requirements.

     
3. After-sales service and warranty time

We guarantee that our products will be free from defects in materials and workmanship within 12 months from the date of delivery. The warranty is void due to improper use, incorrect installation, and physical damage.
 

4. How to place an order?

Send us an email with the models, brand, quantity, consignee information, model of transportation, and payment
Confirm payment and arrange the production.
 

5. What are your packing conditions?

We use standardized export packaging and environmental protection packaging materials. If you have a legally registered patent, we will package the goods in your brand box after receiving your authorization

6. What are your payment terms?

T/T is 30% of the payment in advance and 70% balance before delivery. Before you pay the balance, we will show you photos or videos of the products and packaging.
 

7. How long is your delivery time?

The delivery time of a sample order is 3-5 days, and that of a batch order is 5-45 days. The exact delivery time depends on the item and the quantity you ordered.
 

8. Do you test all products before delivery?
Yes, according to ISO standards, we have professional Q/C personnel, precision testing instruments, and an internal inspection system. We control the quality of every process from material receiving to packaging to ensure that you receive high-quality products

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year
Warranty: One Year
Type: Wheel Hub Bearing
Material: Chrome Steel
Tolerance: P5
Certification: ISO9001, TS16949
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle hub

What are the common symptoms of a failing axle hub, and how can they be identified?

Identifying the common symptoms of a failing axle hub is crucial for timely diagnosis and repair. Here’s a detailed explanation of the common symptoms and how they can be identified:

1. Wheel Vibrations:

One of the common symptoms of a failing axle hub is noticeable wheel vibrations. As the hub becomes worn or damaged, it may cause the wheel to wobble or shake while driving. These vibrations can be felt through the steering wheel, floorboard, or seat. To identify this symptom, pay attention to any unusual vibrations that occur, especially at higher speeds.

2. Grinding or Growling Noises:

A failing axle hub can produce grinding or growling noises. This can be an indication of worn-out or damaged wheel bearings within the hub. The noise may vary in intensity, and it is often more pronounced during turns or when the vehicle is in motion. To identify this symptom, listen for any unusual grinding or growling sounds coming from the wheels while driving.

3. Wheel Play or Looseness:

A failing axle hub can result in wheel play or looseness. When the hub is damaged or worn, it may not provide a secure mounting point for the wheel. As a result, the wheel may have excessive play or feel loose when you attempt to wiggle it by hand. To identify this symptom, jack up the vehicle and try to move the wheel in different directions to check for any abnormal movement.

4. Uneven Tire Wear:

A failing axle hub can contribute to uneven tire wear. If the hub is damaged, it can affect the alignment and cause the tire to wear unevenly. Look for signs of abnormal tire wear, such as excessive wear on one side of the tire or feathering patterns. Uneven tire wear may also be accompanied by other symptoms, such as vibrations or pulling to one side while driving.

5. ABS Warning Light:

In some cases, a failing axle hub can trigger the ABS (Anti-lock Braking System) warning light on the vehicle’s dashboard. This can occur if there is a problem with the wheel speed sensor, which is often integrated into the hub assembly. The ABS warning light indicates a fault in the braking system and should be diagnosed using a diagnostic tool by a qualified technician.

6. Visual Inspection:

A visual inspection can also help identify signs of a failing axle hub. Look for any visible damage or wear on the hub, such as cracks, corrosion, or bent flanges. Additionally, check for any leaking grease around the hub or signs of excessive heat, which can indicate bearing failure.

7. Professional Diagnosis:

If you suspect a failing axle hub but are unsure, it is recommended to have the vehicle inspected by a qualified mechanic. They can perform a comprehensive examination of the wheel assembly, including the hub, bearings, and associated components. They may use specialized tools and equipment to measure wheel play, check for bearing wear, and assess the overall condition of the hub.

In summary, common symptoms of a failing axle hub include wheel vibrations, grinding or growling noises, wheel play or looseness, uneven tire wear, ABS warning light activation, and visible damage. It is essential to pay attention to these symptoms and seek professional diagnosis and repair to prevent further damage and ensure the safe operation of the vehicle.

axle hub

Are there aftermarket axle hubs available with enhanced durability or performance features?

Yes, there are aftermarket axle hubs available with enhanced durability or performance features. Aftermarket parts are components that are produced by manufacturers other than the original equipment manufacturer (OEM) of the vehicle. These aftermarket axle hubs are designed to provide improved durability, performance, or other specialized features compared to the stock OEM axle hubs. Here’s a detailed explanation:

  • Durability enhancements: Aftermarket axle hubs may incorporate design improvements or use materials that enhance their durability and longevity. These enhancements can include reinforced bearing housings, stronger wheel studs, improved seals and gaskets, or upgraded materials that better withstand heavy loads, extreme temperatures, or harsh driving conditions. The goal is to provide a more robust and long-lasting axle hub solution.
  • Performance features: Some aftermarket axle hubs are designed to offer enhanced performance characteristics. These performance features can include better heat dissipation properties, reduced rotational friction, or improved weight distribution. Performance-oriented axle hubs may also be engineered to provide more precise wheel alignment, improved handling, or reduced unsprung weight, which can contribute to overall vehicle performance.
  • Specialized applications: In addition to durability and performance enhancements, aftermarket axle hubs may be available for specialized applications. For example, there are aftermarket axle hubs designed specifically for off-road vehicles, heavy-duty towing, or high-performance sports cars. These specialized axle hubs may have features such as increased load-bearing capacity, improved water and debris resistance, or compatibility with upgraded braking systems.
  • Brands and manufacturers: The aftermarket industry offers a wide range of options from various brands and manufacturers. Some aftermarket companies specialize in producing high-quality replacement parts, including axle hubs, that are designed to meet or exceed OEM standards. These aftermarket brands may have a reputation for providing durable and high-performance products, and they often offer warranties to back up their claims.
  • Research and compatibility: When considering aftermarket axle hubs with enhanced durability or performance features, it is essential to conduct thorough research. Look for reputable aftermarket brands known for their quality and reliability. Additionally, ensure compatibility with your specific vehicle make, model, and year. Most aftermarket manufacturers provide compatibility information or have online resources to help you select the correct axle hub for your vehicle.

It’s worth noting that while aftermarket axle hubs can offer enhanced durability or performance features, not all aftermarket parts are created equal. The quality and performance of aftermarket axle hubs can vary depending on the manufacturer and brand. It’s advisable to choose reputable aftermarket brands that have a track record of producing reliable and high-quality components. Consulting with automotive professionals or enthusiasts and reading customer reviews can also provide valuable insights when selecting aftermarket axle hubs.

In summary, aftermarket axle hubs with enhanced durability or performance features are available. These aftermarket options may incorporate design improvements, specialized materials, or performance-oriented features to offer increased durability, improved performance, or compatibility with specialized applications. Conducting thorough research and selecting reputable aftermarket brands can help ensure the quality and compatibility of the aftermarket axle hubs for your vehicle.

axle hub

How do changes in wheel offset affect the angles and performance of axle hubs?

Changes in wheel offset can have a significant impact on the angles and performance of axle hubs. Here’s a detailed explanation:

Wheel offset refers to the distance between the centerline of the wheel and the mounting surface. It determines how far the wheel and tire assembly will be positioned in relation to the axle hub. There are three types of wheel offsets: positive offset, zero offset, and negative offset.

Here’s how changes in wheel offset can affect the angles and performance of axle hubs:

  • Camber Angle: Camber angle refers to the inward or outward tilt of the wheel when viewed from the front of the vehicle. Changes in wheel offset can impact the camber angle. Increasing positive offset or reducing negative offset typically results in more positive camber, while increasing negative offset or reducing positive offset leads to more negative camber. Improper camber angle can cause uneven tire wear, reduced traction, and handling issues.
  • Track Width: Wheel offset affects the track width, which is the distance between the centerlines of the left and right wheels. Wider track width can improve stability and cornering performance. Increasing positive offset or reducing negative offset generally widens the track width, while increasing negative offset or reducing positive offset narrows it.
  • Steering Geometry: Changes in wheel offset also impact the steering geometry of the vehicle. Altering the offset can affect the scrub radius, which is the distance between the tire contact patch and the steering axis. Changes in scrub radius can influence steering effort, feedback, and stability. It’s important to maintain the appropriate scrub radius for optimal handling and performance.
  • Wheel Bearing Load: Wheel offset affects the load applied to the wheel bearings. Increasing positive offset or reducing negative offset generally increases the load on the inner wheel bearing, while increasing negative offset or reducing positive offset increases the load on the outer wheel bearing. Proper wheel bearing load is crucial for their longevity and performance.
  • Clearance and Interference: Changes in wheel offset can also impact the clearance between the wheel and suspension components or bodywork. Insufficient clearance due to excessive positive offset or inadequate clearance due to excessive negative offset can lead to rubbing, interference, or potential damage to the axle hub, suspension parts, or bodywork.

It’s important to note that any changes in wheel offset should be done within the manufacturer’s recommended specifications or in consultation with knowledgeable professionals. Deviating from the recommended wheel offset can lead to adverse effects on the axle hub angles and performance, as well as other aspects of the vehicle’s handling and safety.

When modifying wheel offset, it is crucial to consider the overall impact on the vehicle’s suspension geometry, clearance, and alignment. It may be necessary to make corresponding adjustments to maintain proper alignment angles, such as camber, toe, and caster, to ensure optimal tire wear, handling, and performance.

In summary, changes in wheel offset can have a significant impact on the angles and performance of axle hubs. They can affect camber angles, track width, steering geometry, wheel bearing load, and clearance. It is important to adhere to manufacturer’s specifications and consult with knowledgeable professionals when considering changes in wheel offset to ensure proper alignment, optimal performance, and safe operation of the vehicle.

China Best Sales Front Axle Wheel Hub Assembly Vkba3511 for Opel Astra Vauxhall Astra 13123486 1603209 90538940 9117620 Wheel Hub Bearing Unit   axle costChina Best Sales Front Axle Wheel Hub Assembly Vkba3511 for Opel Astra Vauxhall Astra 13123486 1603209 90538940 9117620 Wheel Hub Bearing Unit   axle cost
editor by CX 2024-01-04

China Good quality Trailer Parts 5X4.5″ Trailer Hubs Trailer Idler Hub Non-Brake Wheel Hub Kit with Bearing and Spindle with Best Sales

Product Description

Product Description

  • One piece unit includes hub,studs,bearing races(press in).
  • Bearings,cap,seal,lug nuts,spindles,spindle washers,spindle nuts also available.
  • Bolt hole,PCD and LOGO could be customised.
  • Machined process minimizes runout and warping.
  • Balanced unit provides smooth ride.
  • 1/2″ ,7/16″wheel studs and industry-standard races are included.
  • HT250 ,G3000 or QT450 cast iron construction.

Product Parameters

Model No. Spindle Size PCD Bearings Outer Bearing Outside Cup Outer  Bearings Inner Bearing Outside Cup Inner Loading Capacity Hub Size
IH-100 1 1/16″ straight 4×4″(4×101.6) L44649 L44610 L44649 L44610 2200lbs 138.2
IH-150 1 1/16″ straight 5×4.5″(5×114.3) L44649 L44610 L44649 L44610 2200lbs 143.8
IH-151 1 1/16″ straight 5×4.5″(5×114.3) L44649 L44610 L44649 L44610 2200lbs 160
IH-545 1 3/8″ x 1 1/16″ 5×4.5″(5×114.3) L44649 L44610 L68149 L68111 3500lbs 160
IH-46205 1 1/16″ straight 5×4.5″(5×114.3) L44649 L44610 L44649 L44610 2200lbs 146
IH-46210 1 3/8″ x 1 1/16″ 5×4.5″(5×114.3) L44649 L44610 L68149 L68111 3500lbs 160.5
IH-5475 1 3/8″ x 1 1/16″ 5×4.75″(5×120.6) L44649 L44610 L68149 L68111 3500lbs 160
IH-550 1 3/8″ x 1 1/16″ 5×5″(5×127) L44649 L44610 L68149 L68111 3500lbs 160
IH2-550 1 3/8″ x 1 1/16″ 5×5″(5×127) L44649 L44610 L68149 L68111 3500lbs 174.2
IH-555 1 3/8″ x 1 1/16″ 5×5.5″(5×139.7) L44649 L44610 L68149 L68111 3500lbs 174.2
IH-749 1 3/8″ x 1 1/16″ 6×5.5″(6×139.7) L44649 L44610 L68149 L68111 3500lbs 174.2
IH-655 1 3/4″x1 1/4″ 6×5.5″(6×139.7) 15123 15245 25580 25520 6000lbs 183.2
IH-865 1 3/4″x1 1/4″ 8×6.5″(8×165.1) 14125A 14276 25580 25520 7000lbs 216.9
                 
HQ.B-type 1 3/8″x7/8″ HQ 5×4.75″(5×120.6) LM12749 LM12710 L68149 L68110 3500lbs  6″
IH-860-A67/
L/C A-type
1 1/4″x3/4″ L/C  6×5.5″(6×139.7) LM11949 LM11910 LM67048 LM67571 2200lbs 7.5″(192.4)
L/C B-type 1 3/8″x7/8″ L/C  6×5.5″(6×139.7) LM12749 LM12710 L68149 L68110 3500lbs 7.5″
IH-850-A522 1 1/4″x3/4″ 5×4.25″(5×107.9) LM11949 LM11910 LM67048 LM67571 2200lbs 5.5″(138.8)
 HT A-type 1 1/4″x3/4″ HT 5×4.25″(5×107.9) LM11949 LM11910 LM67048 LM67571 2200lbs 6″
IH-860-A524 /
HT B-type
1 3/8″x7/8″ HT 5×4.25″(5×107.9) LM12749 LM12710 L68149 L68110 3500lbs 6″(152.4)
FORD A-type 1 1/4″x3/4″ FORD 5×4.5″(5×114.3) LM11949 LM11910 LM67048 LM67571 2200lbs 6″
FORD B-type 1 3/8″x7/8″ FORD 5×4.5″(5×114.3) LM12749 LM12710 L68149 L68110 3500lbs 6″
IH860-A414ZPI /
MINI 
1 3/8″x7/8″ MINI 4×4″(4×101.6) LM12749 LM12710 L68149 L68110 3500lbs 5.5″(138.8)

Packaging & Shipping

 

Our Advantages

 

Company Profile

HangZhou Tsingleader Industry Co., Ltd. is located in the beautiful HangZhou city. We specialize in the production of trailer parts, axle and transmission of engineering machinery and special engineering and agricultural machinery.
Over the past years, Tsingleader Industry has invested 4 manufacturing plants in China. Following the principle of “quality assurance, abiding by the contract, reciprocity, mutual benefit and first-class services”, we have won the trust from our clients both at home and abroad.
Our annual sales amount reaches USD 5 million and our products have been exported to North and South America, Europe ,Africa,South Asia and the Middle East.
We sincerely hope to become your earnest business partner and your contact will be warmly welcomed.

Screw Sizes and Their Uses

Screws have different sizes and features. This article will discuss screw sizes and their uses. There are 2 main types: right-handed and left-handed screw shafts. Each screw features a point that drills into the object. Flat tipped screws, on the other hand, need a pre-drilled hole. These screw sizes are determined by the major and minor diameters. To determine which size of screw you need, measure the diameter of the hole and the screw bolt’s thread depth.

The major diameter of a screw shaft

The major diameter of a screw shaft is the distance from the outer edge of the thread on 1 side to the tip of the other. The minor diameter is the inner smooth part of the screw shaft. The major diameter of a screw is typically between 2 and 16 inches. A screw with a pointy tip has a smaller major diameter than 1 without. In addition, a screw with a larger major diameter will have a wider head and drive.
The thread of a screw is usually characterized by its pitch and angle of engagement. The pitch is the angle formed by the helix of a thread, while the crest forms the surface of the thread corresponding to the major diameter of the screw. The pitch angle is the angle between the gear axis and the pitch surface. Screws without self-locking threads have multiple starts, or helical threads.
The pitch is a crucial component of a screw’s threading system. Pitch is the distance from a given thread point to the corresponding point of the next thread on the same shaft. The pitch line is 1 element of pitch diameter. The pitch line, or lead, is a crucial dimension for the thread of a screw, as it controls the amount of thread that will advance during a single turn.
screwshaft

The pitch diameter of a screw shaft

When choosing the appropriate screw, it is important to know its pitch diameter and pitch line. The pitch line designates the distance between adjacent thread sides. The pitch diameter is also known as the mean area of the screw shaft. Both of these dimensions are important when choosing the correct screw. A screw with a pitch of 1/8 will have a mechanical advantage of 6.3. For more information, consult an application engineer at Roton.
The pitch diameter of a screw shaft is measured as the distance between the crest and the root of the thread. Threads that are too long or too short will not fit together in an assembly. To measure pitch, use a measuring tool with a metric scale. If the pitch is too small, it will cause the screw to loosen or get stuck. Increasing the pitch will prevent this problem. As a result, screw diameter is critical.
The pitch diameter of a screw shaft is measured from the crest of 1 thread to the corresponding point on the next thread. Measurement is made from 1 thread to another, which is then measured using the pitch. Alternatively, the pitch diameter can be approximated by averaging the major and minor diameters. In most cases, the pitch diameter of a screw shaft is equal to the difference between the two.

The thread depth of a screw shaft

Often referred to as the major diameter, the thread depth is the outermost diameter of the screw. To measure the thread depth of a screw, use a steel rule, micrometer, or caliper. In general, the first number in the thread designation indicates the major diameter of the thread. If a section of the screw is worn, the thread depth will be smaller, and vice versa. Therefore, it is good practice to measure the section of the screw that receives the least amount of use.
In screw manufacturing, the thread depth is measured from the crest of the screw to the root. The pitch diameter is halfway between the major and minor diameters. The lead diameter represents the amount of linear distance traveled in 1 revolution. As the lead increases, the load capacity decreases. This measurement is primarily used in the construction of screws. However, it should not be used for precision machines. The thread depth of a screw shaft is essential for achieving accurate screw installation.
To measure the thread depth of a screw shaft, the manufacturer must first determine how much material the thread is exposed to. If the thread is exposed to side loads, it can cause the nut to wedge. Because the nut will be side loaded, its thread flanks will contact the nut. The less clearance between the nut and the screw, the lower the clearance between the nut and the screw. However, if the thread is centralized, there is no risk of the nut wedgeing.
screwshaft

The lead of a screw shaft

Pitch and lead are 2 measurements of a screw’s linear distance per turn. They’re often used interchangeably, but their definitions are not the same. The difference between them lies in the axial distance between adjacent threads. For single-start screws, the pitch is equal to the lead, while the lead of a multi-start screw is greater than the pitch. This difference is often referred to as backlash.
There are 2 ways to calculate the pitch and lead of a screw. For single-start screws, the lead and pitch are equal. Multiple-start screws, on the other hand, have multiple starts. The pitch of a multiple-start screw is the same as its lead, but with 2 or more threads running the length of the screw shaft. A square-thread screw is a better choice in applications requiring high load-bearing capacity and minimal friction losses.
The PV curve defines the safe operating limits of lead screw assemblies. It describes the inverse relationship between contact surface pressure and sliding velocity. As the load increases, the lead screw assembly must slow down in order to prevent irreversible damage from frictional heat. Furthermore, a lead screw assembly with a polymer nut must reduce rpm as the load increases. The more speed, the lower the load capacity. But, the PV factor must be below the maximum allowed value of the material used to make the screw shaft.

The thread angle of a screw shaft

The angle between the axes of a thread and the helix of a thread is called the thread angle. A unified thread has a 60-degree angle in all directions. Screws can have either a tapped hole or a captive screw. The screw pitch is measured in millimeters (mm) and is usually equal to the screw major diameter. In most cases, the thread angle will be equal to 60-degrees.
Screws with different angles have various degrees of thread. Originally, this was a problem because of the inconsistency in the threading. However, Sellers’s thread was easier to manufacture and was soon adopted as a standard throughout the United States. The United States government began to adopt this thread standard in the mid-1800s, and several influential corporations in the railroad industry endorsed it. The resulting standard is called the United States Standard thread, and it became part of the ASA’s Vol. 1 publication.
There are 2 types of screw threads: coarse and fine. The latter is easier to tighten and achieves tension at lower torques. On the other hand, the coarse thread is deeper than the fine one, making it easier to apply torque to the screw. The thread angle of a screw shaft will vary from bolt to bolt, but they will both fit in the same screw. This makes it easier to select the correct screw.
screwshaft

The tapped hole (or nut) into which the screw fits

A screw can be re-threaded without having to replace it altogether. The process is different than that of a standard bolt, because it requires threading and tapping. The size of a screw is typically specified by its major and minor diameters, which is the inside distance between threads. The thread pitch, which is the distance between each thread, is also specified. Thread pitch is often expressed in threads per inch.
Screws and bolts have different thread pitches. A coarse thread has fewer threads per inch and a longer distance between threads. It is therefore larger in diameter and longer than the material it is screwed into. A coarse thread is often designated with an “A” or “B” letter. The latter is generally used in smaller-scale metalworking applications. The class of threading is called a “threaded hole” and is designated by a letter.
A tapped hole is often a complication. There is a wide range of variations between the sizes of threaded holes and nut threads, so the tapped hole is a critical dimension in many applications. However, even if you choose a threaded screw that meets the requisite tolerance, there may be a mismatch in the thread pitch. This can prevent the screw from freely rotating.

China Good quality Trailer Parts 5X4.5China Good quality Trailer Parts 5X4.5

China Standard Rear Left Wheel Hub Bearing for CZPT Lexus OE 42460-60010 42460-60020 42410-60060 2dacf044n-4L 512227 Ha594246 Grw271 9244004 Wheel Hub Unit with Best Sales

Product Description

Product Description

Product Name

Wheel hub assembly

Brand

PPB/Neutral Or As Your Request

Model Number

Front & rear wheel hub unit 42460-6571 42460-6571 42410-6.2

VKBA523 482A/472 VKBA 5038 35BWD16 VKM14103

 

 

Company Profile

ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and other parts.

Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.

 

Customer’s satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.

 

Our Advantages

More than 20 years of manufacturing and exporting experience
OEM manufacturing available
Full range, large stock
Quickly feedback
One year warranty
One-stop service
On-time delivery

Packaging & Shipping

FAQ

1. What’s the minimum order quantity?

We don’t have the minimum order quantity. We can also provide free samples, but you need to pay the freight.

     
 2. Do you provide ODM&OEM order service?

Yes, we provide ODM&OEM services to customers around the world, and we can customize different brands and different sizes of packaging boxes according to customers’ requirements.

     
3. After-sales service and warranty time

We guarantee that our products will be free from defects in materials and workmanship within 12 months from the date of delivery. The warranty is void due to improper use, incorrect installation, and physical damage.
 

4. How to place an order?

Send us an email of the models, brand, quantity, consignee information, model of transportation, and payment
Confirm payment and arrange the production.
 

5. What are your packing conditions?

We use standardized export packaging and environmental protection packaging materials. If you have a legally registered patent, we will package the goods in your brand box after receiving your authorization

6. What are your payment terms?

T/T is 30% of the payment in advance and 70% balance before delivery. Before you pay the balance, we will show you photos or videos of the products and packaging.
 

7. How long is your delivery time?

The delivery time of sample order is 3-5 days, and that of a batch order is 5-45 days. The exact delivery time depends on the item and the quantity you ordered.
 

8. Do you test all products before delivery?
Yes, according to ISO standards, we have professional Q/C personnel, precision testing instruments, and an internal inspection system. We control the quality of every process from material receiving to packaging to ensure that you receive high-quality products

 

The 5 components of an axle, their function and installation

If you’re considering replacing an axle in your vehicle, you should first understand what it is. It is the component that transmits electricity from 1 part to another. Unlike a fixed steering wheel, the axles are movable. The following article will discuss the 5 components of the half shaft, their function and installation. Hopefully you were able to identify the correct axle for your vehicle. Here are some common problems you may encounter along the way.
Driveshaft

five components

The 5 components of the shaft are flange, bearing surface, spline teeth, spline pitch and pressure angle. The higher the number of splines, the stronger the shaft. The maximum stress that the shaft can withstand increases with the number of spline teeth and spline pitch. The diameter of the shaft times the cube of the pressure angle and spline pitch determines the maximum stress the shaft can withstand. For extreme load applications, use axles made from SAE 4340 and SAE 1550 materials. In addition to these 2 criteria, spline rolling produces a finer grain structure in the material. Cutting the splines reduces the strength of the shaft by 30% and increases stress.
The asymmetric length of the shaft implies different torsional stiffness. A longer shaft, usually the driver’s side, can handle more twist angles before breaking. When the long axis is intact, the short axis usually fails, but this does not always happen. Some vehicles have short axles that permanently break, causing the same failure rate for both. It would be ideal if both shafts were the same length, they would share the same load.
In addition to the spline pitch, the diameter of the shaft spline is another important factor. The small diameter of a spline is the radius at which it resists twisting. Therefore, the splines must be able to absorb shock loads and shocks while returning to their original shape. To achieve these goals, the spline pitch should be 30 teeth or less, which is standard on Chrysler 8.75-inch and GM 12-bolt axles. However, a Ford 8.8-inch axle may have 28 or 31 tooth splines.
In addition to the CV joints, the axles also include CV joints, which are located on each end of the axle. ACV joints, also known as CV joints, use a special type of bearing called a pinion. This is a nut that meshes with the side gear to ensure proper shaft alignment. If you notice a discrepancy, take your car to a shop and have it repaired immediately.

Function

Axles play several important roles in a vehicle. It transfers power from the transmission to the rear differential gearbox and the wheels. The shaft is usually made of steel with cardan joints at both ends. Shaft Shafts can be stationary or rotating. They are all creatures that can transmit electricity and loads. Here are some of their functions. Read on to learn more about axles. Some of their most important features are listed below.
The rear axle supports the weight of the vehicle and is connected to the front axle through the axle. The rear axle is suspended from the body, frame and axle housing, usually spring loaded, to cushion the vehicle. The driveshaft, also called the propshaft, is located between the rear wheels and the differential. It transfers power from the differential to the drive wheels.
The shaft is made of mild steel or alloy steel. The latter is stronger, more corrosion-resistant and suitable for special environments. Forged for large diameter shafts. The cross section of the shaft is circular. While they don’t transmit torque, they do transmit bending moment. This allows the drive train to rotate. If you’re looking for new axles, it’s worth learning more about how they work.
The shaft consists of 3 distinct parts: the main shaft and the hub. The front axle assembly has a main shaft, while the rear axle is fully floating. Axles are usually made of chrome molybdenum steel. The alloy’s chromium content helps the axle maintain its tensile strength even under extreme conditions. These parts are welded into the axle housing.
Driveshaft

Material

The material used to make the axle depends on the purpose of the vehicle. For example, overload shafts are usually made of SAE 4340 or 1550 steel. These steels are high strength low alloy alloys that are resistant to bending and buckling. Chromium alloys, for example, are made from steel and have chromium and molybdenum added to increase their toughness and durability.
The major diameter of the shaft is measured at the tip of the spline teeth, while the minor diameter is measured at the bottom of the groove between the teeth. These 2 diameters must match, otherwise the half shaft will not work properly. It is important to understand that the brittleness of the material should not exceed what is required to withstand normal torque and twisting, otherwise it will become unstable. The material used to make the axles should be strong enough to carry the weight of a heavy truck, but must also be able to withstand torque while still being malleable.
Typically, the shaft is case hardened using an induction process. Heat is applied to the surface of the steel to form martensite and austenite. The shell-core interface transitions from compression to tension, and the peak stress level depends on the process variables used, including heating time, residence time, and hardenability of the steel. Some common materials used for axles are listed below. If you’re not sure which material is best for your axle, consider the following guide.
The axle is the main component of the axle and transmits the transmission motion to the wheels. In addition, they regulate the drive between the rear hub and the differential sun gear. The axle is supported by axle bearings and guided to the path the wheels need to follow. Therefore, they require proper materials, processing techniques and thorough inspection methods to ensure lasting performance. You can start by selecting the material for the shaft.
Choosing the right alloy for the axle is critical. You will want to find an alloy with a low carbon content so it can harden to the desired level. This is an important consideration because the hardenability of the alloy is important to the durability and fatigue life of the axle. By choosing the right alloy, you will be able to minimize these problems and improve the performance of your axle. If you have no other choice, you can always choose an alloy with a higher carbon content, but it will cost you more money.
Driveshaft

Install

The process of installing a new shaft is simple. Just loosen the axle nut and remove the set bolt. You may need to tap a few times to get a good seal. After installation, check the shaft at the points marked “A” and “D” to make sure it is in the correct position. Then, press the “F” points on the shaft flange until the points are within 0.002″ of the runout.
Before attempting to install the shaft, check the bearings to make sure they are aligned. Some bearings may have backlash. To determine the amount of differential clearance, use a screwdriver or clamp lever to check. Unless it’s caused by a loose differential case hub, there shouldn’t be any play in the axle bearings. You may need to replace the differential case if the axles are not mounted tightly. Thread adjusters are an option for adjusting drive gear runout. Make sure the dial indicator is mounted on the lead stud and loaded so that the plunger is at right angles to the drive gear.
To install the axle, lift the vehicle with a jack or crane. The safety bracket should be installed under the frame rails. If the vehicle is on a jack, the rear axle should be in the rebound position to ensure working clearance. Label the drive shaft assemblies and reinstall them in their original positions. Once everything is back in place, use a 2-jaw puller to pry the yoke and flange off the shaft.
If you’ve never installed a half shaft before, be sure to read these simple steps to get it right. First, check the bearing surfaces to make sure they are clean and undamaged. Replace them if they look battered or dented. Next, remove the seal attached to the bushing hole. Make sure the shaft is installed correctly and the bearing surfaces are level. After completing the installation process, you may need to replace the bearing seals.

China Standard Rear Left Wheel Hub Bearing for CZPT Lexus OE 42460-60010 42460-60020 42410-60060 2dacf044n-4L 512227 Ha594246 Grw271 9244004 Wheel Hub Unit   with Best SalesChina Standard Rear Left Wheel Hub Bearing for CZPT Lexus OE 42460-60010 42460-60020 42410-60060 2dacf044n-4L 512227 Ha594246 Grw271 9244004 Wheel Hub Unit   with Best Sales

China wholesaler Wheel Hub Bearing 512432, 2119810227, Br930813 with Best Sales

Product Description

Contact:; Joanna Xuan  
Mob:; +86~8 13858117 
 
1.;Reference OEM NO.;:;512432,;2119815717,;BR93571

2.;Product Specification:;
Item Condition:; New
Item Description:; Wheel Bearing and Hub Assembly
Position:; Rear Axle

3.;About us :;
We are specialize in manufacturing wide range of automotive wheel bearing,; wheel hub bearing,; wheel hub for European and American,; Japanese,; Korean automobiles:;
a.; The DAC Series wheel bearing;
b.; The Second generation wheel Hub Units;
c.; The Third generation wheel Hub bearing;
 
We have passed the evaluation of ISO9001:;2000 ,; TS16949 Quality management system certification and we believe that quality and service is key to success .;our company will always offer high quality products and satisfying after-sale service to all our customers .;

Some New models of our wheel hub bearing,;Hub assembly as following:;

512571 512040 512122 512158 512173 512184 512204 512213 512226 512232
512239 512249 512251 512255 512261 512262 512263 512264 512306 512307
512315 512354 512355 512356 512361 512362 512364 512365 512376 512379
512382 512385 512387 512389 512390 512391 512392 512393 512394 512395
512396 512397 512399 512402 512404 512406 512410 512411 512412 512413
512414 512415 512417 512421 512422 512423 512425 512428 512429 512430
512431 512432 512433 512434 512436 512438 512441 512442 512447 512448
512449 512450 512451 512452 512453 512454 512455 512456 512465 512466
512468 512473 512478 512479 512480 512482 512486 512489 512490 512502
512504 512508 512509 512513 512516 512518 512519 512522 512530 512531
512533 512538 512525 512526 512527 513079 513082 513093 513099 513114
513115 513153 513155 513165 513168 513195 513216 513251 513259 513269
513278 513279 513284 513285 513289 513291 513293 513300 513302 513303
513304 513305 513309 513311 513312 513313 513314 513315 513316 513324
513326 513340 513347 513350 513356 515085 515112 515116 515125 515127
515130 515131 515132 515133 515134 515142 515143 515162 518501 518502
518503 518504 518505 518506 518507 518508 518509 518510 518511 518512
518514 518515 518516 518519 541001 541002 541003 541004 541005 541007
541008 541009 541571 541011 541012 541016 HA590002 HA590041 HA590043 HA590047
HA590063 HA590096 HA595717 HA590124 HA590125 HA590139 HA590140 HA590199 HA595715 HA595714
HA595718 HA595717 HA595716 HA595718 HA590267 HA595710 HA59571 HA590322 HA590324 HA590330
HA59571 HA590360 HA590361 HA590362 HA590367 HA59571 HA59 0571 HA59571 HA59571 HA590383
HA59 0571 HA590397 HA59 0571 HA590407 HA590408 HA590409 HA59571 HA59571 HA59571 HA590423
HA590426 HA59 0571 HA590428 HA59571 HA59571 HA59571 HA59571 HA59571 HA59571 HA590440
HA590442 HA590443 HA590443 HA590444 HA590446 HA590449 HA590450 HA59571 HA59571 HA590460
HA59 0571 HA59571 HA59571 HA59571 HA59571 HA59571 HA59 0571 HA59 0571 HA590487 HA590491
HA59571 HA59571 HA59571 HA590522 HA59 0571   HA590528 HA59571 HA59571 HA59571 HA590541
HA59571 HA59571 HA590565 HA590568 SP500704 SP555717 SP555719 SP555710 SP555711 SP555712
SP55571 SP620301 SP620303 BR93571 BR930862 BR93571 BR930899 BR930900    

Screw Shaft Types

A screw shaft is a cylindrical part that turns. Depending on its size, it is able to drive many different types of devices. The following information outlines the different types of screws, including their sizes, material, function, and applications. To help you select the right screw shaft, consider the following factors:
screwshaft

Size

A screw can come in a variety of shapes and sizes, ranging from a quarter to a quarter-inch in diameter. A screw is a cylindrical shaft with an inclined plane wrapped around it, and its main function is to fasten objects together by translating torque into a linear force. This article will discuss the dimensions of screws and how to determine the size of a screw. It is important to note that screw sizes can be large and small depending on the purpose.
The diameter of a screw is the diameter of its shaft, and it must match the inner diameter of its nuts and washers. Screws of a certain diameter are also called machine screws, and they can be larger or smaller. Screw diameters are measured on the shaft underneath the screw head. The American Society of Mechanical Engineers (ASME) standardized screw diameters in 3/50-inch to 16 (3/8-inch) inches, and more recently, sizes were added in U.S. fractions of an inch. While shaft and head diameters are standardized, screw length may vary from job to job.
In the case of the 2.3-mm screw group, the construct strength was not improved by the 1.2-mm group. The smaller screw size did not increase the strength of the construct. Further, ABS material did not improve the construct strength. Thus, the size of screw shaft is an important consideration in model design. And remember that the more complex your model is, the larger it will be. A screw of a given size will have a similar failure rate as a screw of a different diameter.
Although different screw sizes are widely used, the differences in screw size were not statistically significant. Although there are some limitations, screws of different sizes are generally sufficient for fixation of a metacarpal shaft fracture. However, further clinical studies are needed to compare screw sizes for fracture union rates. So, if you are unsure of what size of screw shaft you need for your case, make sure to check the metric chart and ensure you use the right one.
screwshaft

Material

The material of a screw shaft plays an important role in the overall performance of a screw. Axial and central forces act to apply torque to the screw, while external forces, such as friction, exert a bending moment. The torsional moments are reflected in the torque, and this causes the screw to rotate at a higher rate than necessary. To ensure the longevity of the screw, the material of the screw shaft should be able to handle the bending moment, while the diameter of the shaft should be small enough to avoid causing damage.
Screws are made from different metals, such as steel, brass, titanium, and bronze. Manufacturers often apply a top coating of chromium, brass, or zinc to improve corrosion resistance. Screws made of aluminum are not durable and are prone to rusting due to exposure to weather conditions. The majority of screw shafts are self-locking. They are suited for many applications, including threaded fasteners, C-clamps, and vises.
Screws that are fabricated with conical sections typically feature reduced open cross-sectional areas at the discharge point. This is a key design parameter of conical screw shafts. In fact, reductions of up to 72% are common across a variety of applications. If the screw is designed to have a hard-iron hanger bearing, it must be hardened. If the screw shaft is not hardened, it will require an additional lubricant.
Another consideration is the threads. Screw shafts are typically made of high-precision threads and ridges. These are manufactured on lathes and CNC machines. Different shapes require different materials. Materials for the screw shaft vary. There are many different sizes and shapes available, and each 1 has its own application. In addition to helical and conical screw shafts, different materials are also available. When choosing material, the best 1 depends on the application.
The life of the screw depends on its size, load, and design. In general, the material of the screw shaft, nut body, and balls and rollers determine its fatigue life. This affects the overall life of the screw. To determine whether a specific screw has a longer or shorter life, the manufacturer must consider these factors, as well as the application requirements. The material should be clean and free of imperfections. It should be smooth and free of cracks or flaking, which may result in premature failure.

Function

The function of a screw shaft is to facilitate the rotation of a screw. Screws have several thread forms, including single-start, double-start and multi-start. Each form has its own advantages and disadvantages. In this article we’ll explore each of them in detail. The function of a screw shaft can vary based on its design, but the following are common types. Here are some examples of screw shaft types and their purposes.
The screw’s torque enables it to lift objects. It can be used in conjunction with a bolt and nut to lift a load. Screws are also used to secure objects together. You can use them in screw presses, vises, and screw jacks. But their primary function is to hold objects together. Listed below are some of their main functions. When used to lift heavy loads, they can provide the required force to secure an object.
Screws can be classified into 2 types: square and round. Square threads are more efficient than round ones because they apply 0deg of angle to the nut. Square threads are also stronger than round threads and are often used in high-load applications. They’re generally cheaper to manufacture and are more difficult to break. And unlike square threads, which have a 0deg thread angle, these threads can’t be broken easily with a screwdriver.
A screw’s head is made of a series of spiral-like structures that extend from a cylindrical part to a tip. This portion of the screw is called the shank and is made of the smallest area. The shank is the portion that applies more force to the object. As the shaft extends from the head, it becomes thinner and narrow, forming a pointed tip. The head is the most important part of the screw, so it needs to be strong to perform its function.
The diameter of the screw shaft is measured in millimeters. The M8 screw has a thread pitch of 1.25 mm. Generally, the size of the screw shaft is indicated by the major and minor diameter. These dimensions are appended with a multiplication sign (M8x1).
screwshaft

Applications

The design of screws, including their size and shape, determines their critical rotating speeds. These speeds depend on the threaded part of the screw, the helix angle, and the geometry of the contact surfaces. When applied to a screw, these limits are referred to as “permissible speed limits.” These maximum speeds are meant for short periods of time and optimized running conditions. Continuous operation at these speeds can reduce the calculated life of a nut mechanism.
The main materials used to manufacture screws and screw shafts include steel, stainless steel, titanium, bronze, and brass. Screws may be coated for corrosion resistance, or they may be made of aluminium. Some materials can be threaded, including Teflon and nylon. Screw threads can even be molded into glass or porcelain. For the most part, steel and stainless steel are the most common materials for screw shafts. Depending on the purpose, a screw will be made of a material that is suitable for the application.
In addition to being used in fasteners, screw shafts are used in micrometers, drillers, conveyor belts, and helicopter blades. There are numerous applications of screw shafts, from weighing scales to measuring lengths. If you’re in the market for a screw, make sure to check out these applications. You’ll be happy you did! They can help you get the job done faster. So, don’t delay your next project.
If you’re interested in learning about screw sizing, then it’s important to know the axial and moment loads that your screws will experience. By following the laws of mechanics and knowing the load you can calculate the nominal life of your screw. You can also consider the effect of misalignment, uneven loading, and shocks on your screw. These will all affect the life of your screw. Then, you can select the right screw.

China wholesaler Wheel Hub Bearing 512432, 2119810227, Br930813   with Best SalesChina wholesaler Wheel Hub Bearing 512432, 2119810227, Br930813   with Best Sales

China Best Sales Bicycle 36 Hole Sealed Bearing Rear Hub wholesaler

Product Description

Bicycle 36 Hole Sealed Bearing Rear Hub
 

Product Description

Model: HC-HUB-001
Diameter: a). M10 b). According to customer’s request
Color: a). ED b). UCP
Material: a).Steel b). Aluminum 
  a). Normal Cone b). Big Edge Cone
Hub Lock Nut: a). 5/16″ b). 3/8″
Nut: a). Normal Nut b). Flange Nut
Spacer: Yes  
Brand Name: HONGCHI  
Applicable Bicycle: Road Bicycle, Traditional Bicycle, Heavy-duty Bicycle
Minimum Order Quantity: 1000 Sets  
Place of Origin: ZheJiang  
Packaging Details: a). 20 Doz/Ctn  
Delivery Time: a). 25 days after receiving deposit b). according to order qty
Payment Terms: a). T/T b). L/C
Supply Ability: 50,000 pieces per Month  

 

 

Packaging & Shipping

 

 

Company Profile

ZheJiang HongChi bicycle Co. Ltd located in the biggest bicycle accessory base. We get a wonderful geography, convenient
traffic which near to the Jingzhu and Xihu (West Lake) Dis.g high speed way. And our company is closed to the famous China Bicycle
Accessory Town.

We are professional manufacturer in producing chain wheel&crank, saddle, inner tube, tyre, pedal, front axle, rear axle, MTB bicycle, BMX bicycle, child toys, etc. branded “HongChi”. Meanwhile, we have the autonomy in operation of the import and
export business. Our company has a dozen of great profession product machines. And our productions get a well sale to the bicycle factory and accessories manufactures production all over the country, which based on good quality, cheap price, and perfect after-sales service. So our export sales have been growing year by year. Our productions are spreading over 40 countries and regions including Southeast Asia, East Europe, Africa, and South America.

Hard work and CZPT pursuit is our spirit. Quality first and customer first is our principle. Everyone in HongChi Company is sincerely inviting the colleague all over the world to have cooperation and a better future.

Our Advantages

1. Manufacturer
2. Fashion design
3. Best service
4. Super quality
5. Reasonable price
6. Small MOQ
7. Well-deserved reputation
8. Fast delivery&convient transportation
9. Good after-sales service

FAQ

 

An Overview of Worm Shafts and Gears

This article provides an overview of worm shafts and gears, including the type of toothing and deflection they experience. Other topics covered include the use of aluminum versus bronze worm shafts, calculating worm shaft deflection and lubrication. A thorough understanding of these issues will help you to design better gearboxes and other worm gear mechanisms. For further information, please visit the related websites. We also hope that you will find this article informative.
worm shaft

Double throat worm gears

The pitch diameter of a worm and the pitch of its worm wheel must be equal. The 2 types of worm gears have the same pitch diameter, but the difference lies in their axial and circular pitches. The pitch diameter is the distance between the worm’s teeth along its axis and the pitch diameter of the larger gear. Worms are made with left-handed or right-handed threads. The lead of the worm is the distance a point on the thread travels during 1 revolution of the worm gear. The backlash measurement should be made in a few different places on the gear wheel, as a large amount of backlash implies tooth spacing.
A double-throat worm gear is designed for high-load applications. It provides the tightest connection between worm and gear. It is crucial to mount a worm gear assembly correctly. The keyway design requires several points of contact, which block shaft rotation and help transfer torque to the gear. After determining the location of the keyway, a hole is drilled into the hub, which is then screwed into the gear.
The dual-threaded design of worm gears allows them to withstand heavy loads without slipping or tearing out of the worm. A double-throat worm gear provides the tightest connection between worm and gear, and is therefore ideal for hoisting applications. The self-locking nature of the worm gear is another advantage. If the worm gears are designed well, they are excellent for reducing speeds, as they are self-locking.
When choosing a worm, the number of threads that a worm has is critical. Thread starts determine the reduction ratio of a pair, so the higher the threads, the greater the ratio. The same is true for the worm helix angles, which can be one, two, or 3 threads long. This varies between a single thread and a double-throat worm gear, and it is crucial to consider the helix angle when selecting a worm.
Double-throat worm gears differ in their profile from the actual gear. Double-throat worm gears are especially useful in applications where noise is an issue. In addition to their low noise, worm gears can absorb shock loads. A double-throat worm gear is also a popular choice for many different types of applications. These gears are also commonly used for hoisting equipment. Its tooth profile is different from that of the actual gear.
worm shaft

Bronze or aluminum worm shafts

When selecting a worm, a few things should be kept in mind. The material of the shaft should be either bronze or aluminum. The worm itself is the primary component, but there are also addendum gears that are available. The total number of teeth on both the worm and the addendum gear should be greater than 40. The axial pitch of the worm needs to match the circular pitch of the larger gear.
The most common material used for worm gears is bronze because of its desirable mechanical properties. Bronze is a broad term referring to various copper alloys, including copper-nickel and copper-aluminum. Bronze is most commonly created by alloying copper with tin and aluminum. In some cases, this combination creates brass, which is a similar metal to bronze. The latter is less expensive and suitable for light loads.
There are many benefits to bronze worm gears. They are strong and durable, and they offer excellent wear-resistance. In contrast to steel worms, bronze worm gears are quieter than their counterparts. They also require no lubrication and are corrosion-resistant. Bronze worms are popular with small, light-weight machines, as they are easy to maintain. You can read more about worm gears in CZPT’s CZPT.
Although bronze or aluminum worm shafts are the most common, both materials are equally suitable for a variety of applications. A bronze shaft is often called bronze but may actually be brass. Historically, worm gears were made of SAE 65 gear bronze. However, newer materials have been introduced. SAE 65 gear bronze (UNS C90700) remains the preferred material. For high-volume applications, the material savings can be considerable.
Both types of worms are essentially the same in size and shape, but the lead on the left and right tooth surfaces can vary. This allows for precise adjustment of the backlash on a worm without changing the center distance between the worm gear. The different sizes of worms also make them easier to manufacture and maintain. But if you want an especially small worm for an industrial application, you should consider bronze or aluminum.

Calculation of worm shaft deflection

The centre-line distance of a worm gear and the number of worm teeth play a crucial role in the deflection of the rotor. These parameters should be entered into the tool in the same units as the main calculation. The selected variant is then transferred to the main calculation. The deflection of the worm gear can be calculated from the angle at which the worm teeth shrink. The following calculation is helpful for designing a worm gear.
Worm gears are widely used in industrial applications due to their high transmittable torques and large gear ratios. Their hard/soft material combination makes them ideally suited for a wide range of applications. The worm shaft is typically made of case-hardened steel, and the worm wheel is fabricated from a copper-tin-bronze alloy. In most cases, the wheel is the area of contact with the gear. Worm gears also have a low deflection, as high shaft deflection can affect the transmission accuracy and increase wear.
Another method for determining worm shaft deflection is to use the tooth-dependent bending stiffness of a worm gear’s toothing. By calculating the stiffness of the individual sections of a worm shaft, the stiffness of the entire worm can be determined. The approximate tooth area is shown in figure 5.
Another way to calculate worm shaft deflection is by using the FEM method. The simulation tool uses an analytical model of the worm gear shaft to determine the deflection of the worm. It is based on a two-dimensional model, which is more suitable for simulation. Then, you need to input the worm gear’s pitch angle and the toothing to calculate the maximum deflection.
worm shaft

Lubrication of worm shafts

In order to protect the gears, worm drives require lubricants that offer excellent anti-wear protection, high oxidation resistance, and low friction. While mineral oil lubricants are widely used, synthetic base oils have better performance characteristics and lower operating temperatures. The Arrhenius Rate Rule states that chemical reactions double every 10 degrees C. Synthetic lubricants are the best choice for these applications.
Synthetics and compounded mineral oils are the most popular lubricants for worm gears. These oils are formulated with mineral basestock and 4 to 6 percent synthetic fatty acid. Surface-active additives give compounded gear oils outstanding lubricity and prevent sliding wear. These oils are suited for high-speed applications, including worm gears. However, synthetic oil has the disadvantage of being incompatible with polycarbonate and some paints.
Synthetic lubricants are expensive, but they can increase worm gear efficiency and operating life. Synthetic lubricants typically fall into 2 categories: PAO synthetic oils and EP synthetic oils. The latter has a higher viscosity index and can be used at a range of temperatures. Synthetic lubricants often contain anti-wear additives and EP (anti-wear).
Worm gears are frequently mounted over or under the gearbox. The proper lubrication is essential to ensure the correct mounting and operation. Oftentimes, inadequate lubrication can cause the unit to fail sooner than expected. Because of this, a technician may not make a connection between the lack of lube and the failure of the unit. It is important to follow the manufacturer’s recommendations and use high-quality lubricant for your gearbox.
Worm drives reduce backlash by minimizing the play between gear teeth. Backlash can cause damage if unbalanced forces are introduced. Worm drives are lightweight and durable because they have minimal moving parts. In addition, worm drives are low-noise and vibration. In addition, their sliding motion scrapes away excess lubricant. The constant sliding action generates a high amount of heat, which is why superior lubrication is critical.
Oils with a high film strength and excellent adhesion are ideal for lubrication of worm gears. Some of these oils contain sulfur, which can etch a bronze gear. In order to avoid this, it is imperative to use a lubricant that has high film strength and prevents asperities from welding. The ideal lubricant for worm gears is 1 that provides excellent film strength and does not contain sulfur.

China Best Sales Bicycle 36 Hole Sealed Bearing Rear Hub   wholesaler China Best Sales Bicycle 36 Hole Sealed Bearing Rear Hub   wholesaler